

Direct drive for real high-speed applications

Applications for millturn, power skiving, high-performance grinding, 5-axis simultaneous machining

DD Series

> Direct Drive

2024

Main catalog

6/2024 | EN

Swiss precision technology

pL LEHMANN s a medium-sized business that has specialized in rotary tables for over 40 years:

1960 Founding - Contract manufacturing

1973 Conversion into a stock corporation

1974 Introduction of numerically controlled rotary tables (HUST)

1980 Construction of new factory building

1986 Development of the 400 series

1988 2nd generation joins management

1997 Construction of new assembly building

2000 Development of the 800 series (DD up to 10,000 rpm)

2002 2nd generation assumes management responsibility

2003 Development of the 700 series (DD up to 800 rpm)

2008 Addition of office building

2010 Development of the 500 series

2011 Start of internationalization / lean production

2013 Development of the high-speed version of the 500 series

2016 Expansion of factory building

2019 Introduction of AM-LOCK and the 900 DD series

2021 New MQ series for measurement technology

2022 New P-Line for simple positioning tasks

Today, pL LEHMANN is still an owner-managed family-owned company present in over 20 countries (see back page of this catalog or visit www.lehmann-rotary-tables.com).

The company is committed to typical Swiss values

- Product quality
- Superior technology
- Innovation and flexibility
- Long-term, sound business policies

For more, see www.lehmann-rotary-tables.com.

^{*} Sales and service partners trained and equipped by pL (VAR – value added resellers or VAP - value added partners)

Additional pL products

«Whoever wishes to invest in tomorrow's way of production must consider the needs and opportunities available today.»

CNC rotary tables for economic production: pL LEHMANN offers tailor-made and efficient and solutions for practically every sector plus 10 years of experience in direct drives

Automobile & Mobility

Micromechanical parts & watches

Aircraft & turbines

Machinery & tools

systems

pL rotary tables in use: on over 200 different machine brands and over 1,000 different machine models.

pL expertise for DD: integrations realized for the most commonly used CNC controllers from Fanuc, Siemens, Heidenhain and Mitsubishi.

up to max. 3'300 rpm

High-speed DD

Quick installed

for plug & play

Integrated electronics

EA-Series

T1-Series

DD/DD

DD/PGD

Adaptability

Multifunctional spindle system

Precision

At the workpiece up to $2 \mu m / 100 mm$

High duty time

By default for ED40%, 10 min

High value retention: adjustable at any time, benefits of geared and direct drive can be combined

EA-91x

Highest level of flexibility

- Rotary table is available quickly and can be converted at any time
- If needs change, the investment is not lost
- Pay in installments: First the machine, later the rotary table – can be retrofitted at any time (suitable CNC controller required)

TAP9

TAP9v

Diversity of products

- Wide range of applications for each size
- Lower storage costs, also in service (spare parts)
- Increased sales and service productivity

TAP5

With gear unit rotary table as swiveling / tilting axis

TAP5v

With gear unit rotary table as swiveling / tilting axis

Centric clamping unit

EVARD

TRIAG

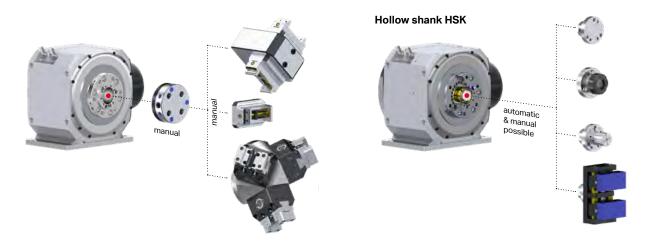

Possible systems

- SCHUNK
- LANG
- Gressel

8

Piranha Clamp

Zero point clamping systems


Possible systems

- pL LEHMANN (ripas & CAPTO)
- Erowa
- System 3R
- Parotec
 Paombole
- RoemheldAMF
- SCHUNK
- LANGGRESSEL
- ...

Centric clamping unit for workpiece handling, mounted zero point clamping system for quick vise replacement

Combination possibilities

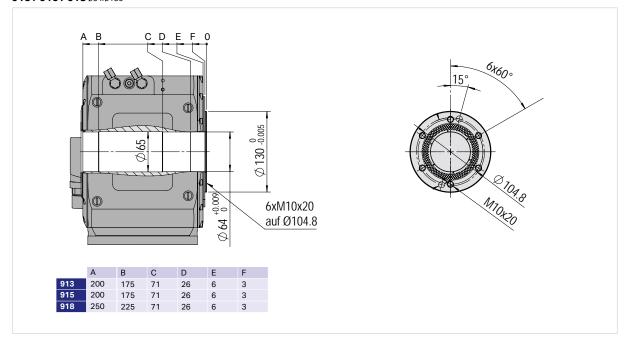
Extremely wide assortment for workpiece clamping. Standardized interface in front and rear: Maximum universality

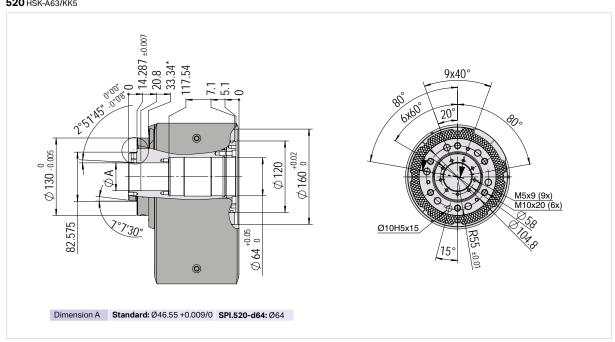
Tap or medium interface

SCHUNK

TRIAG

EROWA 🐠





All spindle connection dimensions front and back for building your fixture. Applies to all variants, EA or T-type rotary table alike

Module size 913 / 915 / 918 ø64/ø130

Module size 520 HSK-A63/KK5

Innovative CUBE-design based on 10 years of experience with DD technology: fully sealed, super-fast, safe, versatile and service-friendly – for Industry 4.0

available with FANUC angular position measuring system – 100% FANUC DDR-compatible!

Prepared for water cooling

 For high speeds and/or long duty cycles (for more information see p. 34)

Transport and attachment holes

- Bolt holes for transport
- may be used for fixtures, tool monitoring, measuring probes

Angular position measuring system & temperature monitoring fully integrated

- RENISHAW measuring systems for MITSUBISHI
- FANUC measuring system, 100% compatible with FANUC DDR
- HEIDENHAIN measuring system with EnDat protocol

Universal spindle nose

- Large mounting Ø 130 mm (outside)
- Large through-bore Ø 64 mm

Innovative sealing system

- 100% leaktight in accordance with IP67
- Front and rear labyrinth backed by lip seal with minimal friction loss
- Very high efficiency and minimal heat generation

Spindle bearing

- High-quality, preloaded spindle bearing at front and support bearing at rear
- Designed for very high rpm values
- Lifetime-lubricated

Spindle clamping with fail-safe function

- energyless clamping
- large clamping diameter
- just 5 bar of air pressure required
- Unique: emergency braking without damage in case of power failure

Rugged cast housing

■-smartBox – for real Industry 4.0

Helps to increase productivity and availability, lower downtime and maintenance costs and permits quick troubleshooting and preventive maintenance.

Sensors for ...

- Speed
- Internal pressure
- Temperature
- Humidity
- Shock / impact
- Limit value exceeded with real-time stamp

Components

- Microprocessor
- 3D accelerometer shock sensor

Monitoring

 Duty cycle limit – overload protection, prevents motor damage

Compatibility

 100% backwards-compatible with blackBOX (starting at Edition 2)

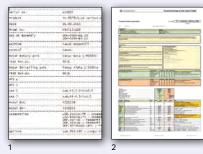
Prepared for interfaces

- WLAN
- Web server with Ethernet and RJ45 port display state/error on CNC

Mobile base plate

- Steel
- 3 sides accessible for mounting at all times
- Cable outlet direction selectable (also at a later date)

Never search for documents again – everything at hand at all times No Internet connection necessary!


The everyday life of a commissioning technician

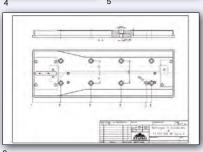
The information needed is missing: electrical schematics, drive data, parameter lists, commissioning instructions ... Commissioning must be interrupted, the search for data begins: paper? Internet? Passwords?. Time is passing. The deadline is approaching. The urgency of the situation means do the best possible with existing knowledge.

Result: It rotates, but functions only halfway, pL specifications cannot be met (rotational speed, cycle time, accuracy...)

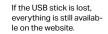
pL finding: Investigations have shown that 70% of optimization cases can be attributed to poor or incorrect commissioning.

smart doc on the USB stick

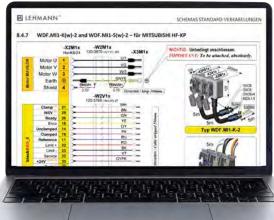
- A mini USB stick is plugged into a USB slot (in the swiveling/tilting axis on T-type rotary tables)
- The following files have been saved on this USB stick:
 1 ADAT drive setup data for each system
 - 2 Appropriate parameter list for the provided CNC control system
 - 3 General operating manual / user's manual in German and English
 - 4 General commissioning manual in German and English with all diagrams
- 5 If necessary, machine-specific commissioning manual in German and English (e.g. for Fanuc)
- 6 Indexing accuracy report(s) to VDI/DGQ 3441
- 7 Geometry report
- 8 Main catalog
- 9 If necessary, special drawings from the customer
- The files are also available online in the pL-ERP (for Helpliner) as well as in the «full documentation» on the pL website (accessible to all pL representatives)
- All files at the current revision level version check not needed, risk of errors minimized


Product documentation saved securely: The USB stick remains on the product

900



Your benefit


- Download no longer necessary extra work eliminated
- Password no longer necessary waiting for registration eliminated
- Internet no longer necessary problems with poor of no network connection eliminated
- No lost documents, no missing USB stick stick is always inserted, «loaded» and safety protected under the USB slot cover
- Everything needed is immediately available (appropriate for each rotary table) – tedious searching eliminated
- Emergency solution by technician no longer necessary

 existing, often wrong (because out-of-date) data are no longer used

ROTOLUTION – customer-specific turn-key solutions «ontop», largely with proven standard elements, from CAD to commissioning.

ROTOMATION – The ideal expansion with standardized automation. Economical. Professional. Simple.

Standard

AMF(3)

YERLY Đ

EROWA 🐠

ROTOMATION

ROTOLUTION

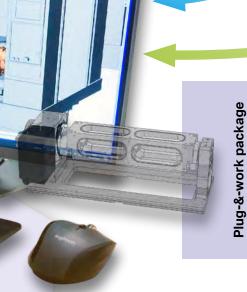
CAD & adaptation

- Installation check
- Adjustment to standard parts
- Special parts

CAD & clamping means

- Workpiece clamping
- Standard/special

see p. 82-111


*Examples

- Workpiece handling
- Partnerships (GU with partners)

CAD & automation

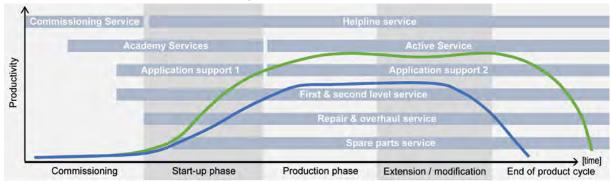
see p. 112-113

Project management and execution, direct if

Problem solution «on top» –

Standard and ROTOLUTION from a single source, ROTOMATION and machine in partnership

Customer


Present in over 30 countries: from sales consultation to the final service

Increase productivity - Extend lifecycle

Comprehensive and professional services throughout the product life cycle maximum availability with consistent quality and high productivity.

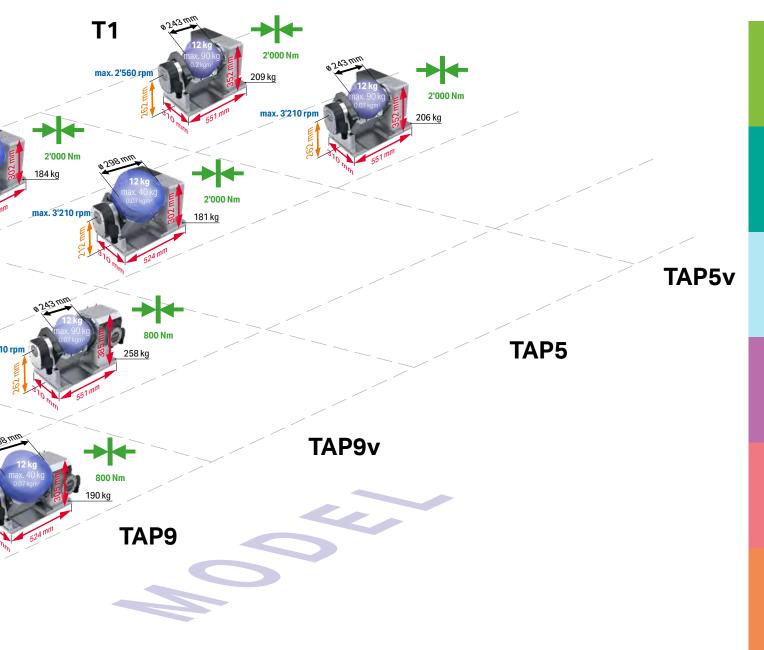
Productivity with LifeCycle service products from pL LEHMANN Productivity without service support

A look in our production: High manufacturing depth provides for flexibility and quality

With workpiece pool for unmanned production

High precision circular and flat grinding

Material flow


Assembly area with Kanban System

Rational equipping of spare parts packages

Interested? Contact us or visit our website at www.lehmann-rotary-tables.com

- For millturn applications (e.g. watch cases from bar stock)
- DD up to 3300 rpm available
- Very compact
- For Siemens, Mitsubishi, HEIDENHAIN and Fanuc (if Fanuc measuring system: 100% Fanuc DDT-compatible)

Weight data represent the standard load; higher weights possible, but require modification of rotational speed, acceleration and jerk limitation.

EA single-axis, single-spindle CNC rotary table
TAP two-axis rotary table, with supporting bearing
TAPv Two-axis rotary table, with support bearing,
low-profile version (vario)

Feed max.: without flux weakening

EA-913 DD, EA-915 DD and EA-918 DD

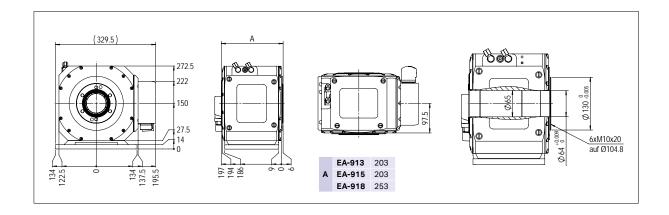
General technical data

				EA-913	EA-915	EA-918
Weight			kg	76	79	97
Spindle through-bore			mm		64	
Clamping torque at max. 5 bar air pressure		X \→+-	Nm		max. 800	
Spindle load	without support		kg	10	00	120
(max. permissible)	with support	-	, ky	20	00	240
Axial force (max. permissible)		X	kN		10	
Pull-out torque	clamped	-)	Nm	1,000 1,200		1,200
Pull-out torque	unclamped			400 500		500
Moment of inertia	Standard load	<u></u>	Leans 2	0.07	0.2	0.5
Moment of Inertia	J max	kgm²	0.7*	2*	5*	
	Fanuc			8		
	Heidenhain			12		
Positioning accuracy +/- (unloaded)	Siemens 1-head	\Box	± arc sec	20		
(ariiodaca)	Siemens 2-head	Ψ	arc sec	5		
	Mitsubishi				20	
Repeat accuracy +/- (unloaded)		\oplus	± arc sec		1	
Cycle time with standard load	90°			0.19	0.24	0.24
(without clamping)	180°		sec	0.24	0.3	0.3

* Speed reduction required

Outgoing cable unit variants

Outgoing cable unit left



Outgoing cable unit top

Outgoing cable right

Can be easily converted by the customer at any time.

Features

- Angular position measuring system +/- 5 arc sec.
- Fail-safe clamping
- Leaktight IP 67
- High-speed up to max. 3300 rpm

Operating parameter reference values

The 900 series rotary tables are the ideal solution for workpiece sizes of up to approx. 100 mm dia. × 100 mm long and when turning operations account for 30% of the overall machining process.

Motor data also applies to dividing/indexing axis on T-type rotary tables p. 24-27

Calculated, theoretical values; subject to change.

Wet-machining

Splash-water cooling – no cooling unit required (immersed in coolant, cooling emulsion max. 30 °C)

Dry machining

Water cooling – cooling unit required 4) (required if splash water cooling is not sufficient)

		Rotary table type	Motor	peak current 3)	max speed 5)	peak torque	intermittent torque	continous torque	standstill torque	max speed 5) with flux weakening 2)
						ED5%	ED40%	ED1	00%	
				[Arms]	[min ⁻¹]		1]	lm]		[min ⁻¹]
9	speed	Type 913 ¹⁾	MOT.HW-A (MOT.ET-A)	57 (70)	2200 (2170)	73 (67)	46 (38)	32 (26)	25 (20)	(3030)
200V	standards	Type 915	MOT.HW-B (MOT.ET-B)	57 (67)	1300 (1300)	123 (117)	80 (70)	55 (48)	44 (37)	(2070)
	stan	Type 918	MOT.HW-C (MOT.ET-C)	57 (63)	600 (651)	240 (234)	181 (147)	125 (101)	124 (77)	(1120)
(2	sbeed	Type 913 ¹⁾	MOT.HW-A (MOT.ET-A)	57 (70)	4200 (3210)	73 (67)	46 (38)	32 (26)	25 (20)	(3210)
400V	standards	Type 915	MOT.HW-B (MOT.ET-B)	57 (67)	2600 (2560)	123 (117)	80 (70)	55 (48)	44 (37)	(2770)
	stan	Type 918	MOT.HW-C (MOT.ET-C)	57 (63)	1200 (1300)	240 (234)	181 (147)	125 (101)	124 (77)	(1850)

For performance diagrams, see p. 50

Item no. EA-915-F1 Measuring system see p. 32 Type Rotary table model

 ¹⁾ not available as swivelling/tilting axis for T1-91x915 TAP9
 ²⁾ not included in the pt. delivery. Currently no data available for hardware.
 ³⁾ The servo booster must provide at least this peak current to achieve the values stated in the table
 ⁴⁾ Recommended for use with a cooling unit (see p. 34):

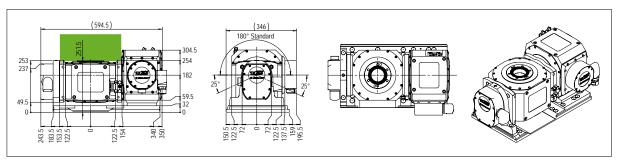
⁻ approx. 1'600 W rated cooling capacity and at least 1'300 W actual cooling capacity

Coolant: water-like, non-corrosive 5) Applies to moment of inertia of 1/2 the standard load. Maximum speed means max. idle speed. These speeds can never be used productively because torque 0 is available here. For Fanuc, a max. of 3000 rpm is possible.

simin. 300 VDC intermediate circuit voltage ⁷⁾ min. 600 VDC intermediate circuit voltage. If low intermediate voltages are reached (e.g. 400 VAC, uncontrolled 565 VDC), the max. speed must be reduced.

Workpiece with internal toothing

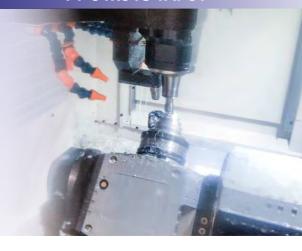
Both axes with direct drive


- good accessibility
- ideal for power skiving, 5Ax-simultaneous machining, millturn

General technical data

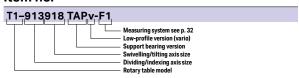
Drive data: see **n. 23**

Drive data: see p. 23							
			T1-913915 TAP9	T1-915915 TAP9	T1-913918 TAP9v	T1-915918 TAP9v	
Weight (aluminum base plate)		kg	190 (166)	2	58	
Spindle through-bore		mm		6	64		
Clamping torque at max. 5 bar air pressure	4th axis	Nm	max. 800				
at max. 3 bai ali pressure	5th axis	Nm					
Spindle load (max. permissible)	-	kg	40)	g	90	
Axial force (max. permissible)	※	kN		2	20		
D.: II	clamped	Non		1'0	000		
Pull-out torque	unclamped	Nm	400				
Manage Address of the control of	Standard load	kgm²	0.07	0.2	0.07	0.2	
Moment of inertia	J max		0.7*	2*	0.7*	2*	
	4th axis Fanuc			8	8		
	5th axis Fanuc		8				
	4th axis Siemens 1-head		20				
Positioning accuracy +/-	5th axis Siemens 1-head	± arc sec	22				
(unloaded, -90 to +90°)	4th axis Siemens 2-head	± alc sec	5				
	5th axis Siemens 2-head		5				
	4th axis Mitsubishi			2	20		
	5th axis Mitsubishi			2	22		
Repeat accuracy +/-	4th axis	± arc sec		,	1		
(unloaded)	5th axis	± 010 000					
	4th axis 90°		0.19	0.24	0.19	0.24	
Cycle time with standard load	5th axis	sec	0.4	18	0.	46	
(without clamping)	4th axis	550	0.24	0.3	0.24	0.3	
	5th axis		0.6	55	0.	61	

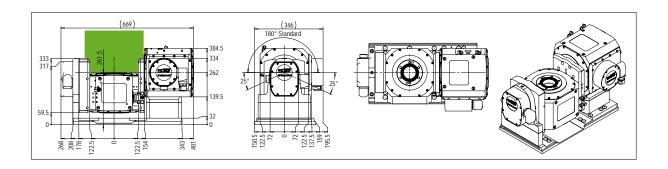

^{*} Speed reduction required

T1-913918 TAP9v and T1-915918 TAP9v

Shorter machine travel for simultaneous machining


- Accelerated machining
- Higher accuracy at the workpiece
- ideal for impeller machining

Available combinations


	Dividing/indexing axis motor*	Swivelling/tilting axis motor*	
T1-913915 TAP9	MOT.ET-A	MOT.ET-B	
T1-915915 TAP9	MOT.ET-B	MOT.ET-B	on request
T1-913918 TAP9v	MOT.ET-A	MOT.ET-C	
T1-915918 TAP9v	MOT.ET-B	MOT.ET-C	on request

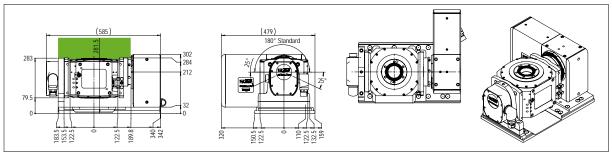
^{*} Motor data: see p. 23

Item no.

T1-913520 TAP5 and T1-915520 TAP5

Indexing axis DD Swiveling/tilting axis with PGD

- extremely resilient swiveling/tilting axis for high loads
- good accessibility
- high weights easier to control


General technical data

For drive data of dividing/indexing axis (rotation) see p. 23, for swivelling/tilting axis see p. 27

			T1-913520 TAP5	T1-915520 TAP5	T1-913520 TAP5v	T1-915520 TAP5v
Weight (aluminum base plate)		kg	181/18	181/184 (155) 206/209		
Spindle through-bore		mm		6	4	
Clamping torque	4th axis	Nm		max.	800	
at max. 5 bar air pressure	5th axis	Nm		2,0	00	
Spindle load (max. permissible)	-)	kg	40	0	9	00
Axial force (max. permissible)	>	kN		2	0	
Dull authorius	clamped	Nm		1,0	00	
Pull-out torque	unclamped	INIII		40	00	
Moment of inertia	Standard load	kgm²	0.07	0.2	0.07	0.2
Moment of mertia	J max	Kgiii	0.7*	2*	0.7*	2*
Feed torque max ***	5th axis	Nm		44	10	
Limited torques due to eccent	ric loads ****	Nm	110			
	4th axis Fanuc	717	8 20 c			
Positioning accuracy +/-	4th axis Siemens 1-head					
(unloaded, -90 to +90°)	4th axis Siemens 2-head	± arc sec				
	4th axis Mitsubishi			2	0	
	5th axis – all motors		28 / 10**	28 / 31**	63 / 53**	63 / 40**
Repeat accuracy +/-	4th axis	arc sec		±	1	
(unloaded)	5th axis	uio seo	±2			
	4th axis 90°		0.19	0.24	0.19	0.24
Cycle time with standard load	5th axis	sec	0.48	0.48	0.46	0.46
(without clamping)	4th axis 180°	360	0.24	0.3	0.24	0.3
	5th axis		0.6	35	0.	61

 $^{^\}star$ Speed reduction required $^{}$ *** with standard load $^{}$ *** Limited gear unit pitch diameter, at 1 rpm 5th axis optional with WMS, see **p. 32**

^{****} For calculation of the torque, see p. 47

T1-913520 TAP5v and T1-915520 TAP5v

Note: Simultaneous machining with the swiveling/tilting axis must be avoided because of eccentricity.

Available combinations

	Dividing/indexing axis motor*	Swivelling/tilting axis motor
T1-913520 TAP5	MOT.ET-A	
T1-915520 TAP5	MOT.ET-B	See table below
T1-913520 TAP5v	MOT.ET-A	See table below
T1-915520 TAP5v	MOT.ET-B	

^{*} Motor data: see p. 23

Drive data X) **+**||→ Tilting/swivelling axis 520 (based on standard load cube) Cycle time*** Feed* Speed [rpm] Motors 30 0.61 1.11 MAVILOR / MOVINOR ** LN-098 400 TAP5v 25 0.73 1.33 TAP5 0.68 1.22 28 FANUC α4 (HV)is 315 TAP5\ 25 0.76 1.36 TAP5 28 0.65 1.19 MITSUBISHI 200V HG105 320 TAP5v 25 0.73 1.33 TAP5 28 0.65 1.19 MITSUBISHI 400V HG-H105 320 TAP5v 25 0.73 1.33 TAP5 30 0.62 1.12 1FK2205 400 TAP5v 28 0.69 1.23 SIEMENS TAP5 30 0.62 1.12 1FK7042 315 TAP5v 1.33 25 0.73

Eccentric version for shorter travel

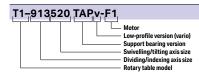
For swivelling/tilting axis

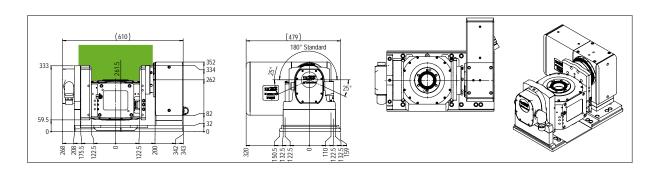
Labyrinth seal (cutaway view)

Recommended for:

- Grinding operations
- High coolant pressures
- Extremely fine abrasive particles

Important information


- The limit values as set out in the corresponding parameter list take precedence over the data and information provided in the main catalog (due to motor, drive enhancement and the respective machine CNC)
- Motor-independent data are optimum values at operating temperature
- Further details are available at www.lehmann-rotary-tables.com, under Download / Commissioning


Options

Item no.	Description
GET.5xx-GEN	Increased gear precision *
SPI.5xx-Lab	Spindle seal with labyrinth, integrated sealing air pressure control

^{*} incl. increased radial and axial run-out 0.003 mm

Item no.

^{***} without clamping

Practical options for special cases.

Please contact us if you have further needs.

Raised center height on T-type rotary tables For all combinations of possible spindle accessories.

Item No.	Increase	SPZ	DDF	SPI.91x-Ada
8	without	•	•	
SPH.TAP9-40	40mm	•	•	•

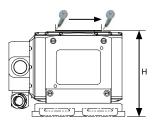
SPZ = Collet chucks with release cylinder, DDF = rotary union

End cap for third-party systems

•		
Item No.	Designation	Required center height increase
SPI.91x-Ada	End cap for attachment of external rotary union / clamping cylinder	SPH.TAP9-40

Vertical clamping

	Item No.	DDF	SPZ	Height [mm]	Weight [kg]
EA-913	GPL.91xver-242*	•	•	242	10.6
EA-915	GPL.91xver-242*	•	•	242	10.6
FA-918			on request		


 * only 1 accessory possible (e.g. DDF), cannot be combined (e.g. DDF+SPZ) SPZ = for clamping cylinder; for more, please refer to **p. 77** DDF = for rotary union; for more, please refer to **p. 35**

Add-on housing for vertical clamping. Shown with rotary union.

Add-on housing for vertical clamping. Shown with direct measuring system compact.

0.01/100 mm (with height increase: 0.005/100 mm)

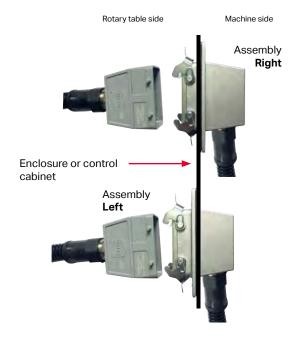
Maximum possible standardization simplifies startup and service

Cabling

Cable set, complete, as follows:

- incl. HARTING connector, incl. wall bushing
- only 1 connector per axis
- bifunctional wall bushings for cab wall as well as for cabinet
- mounted and tested at factory, plug&play

Order items


Item no.	Designation	Dimensions
KAB.F9-4.0-M4g	Fanuc DD, fully cabled	4 m, straight HARTING connector
KAB.H9-4.0-M4g	Siemens and Heidenhain DD, fully cabled	4 m, straight HARTING connector
KAB.MI9-4.0-M4g	Mitsubishi DD, fully cabled	4 m, straight HARTING connector
KAB.H9-6.0vss-M4g	Heidenhain 1Vss DD, fully cabled	6 m, straight HARTING connector

Item no.	Designation	Dimensions
WDF.F9-M4	Wall bushing	per axis for Fanuc
WDF.SH9-M4	Wall bushing	per axis for Siemens
WDF.MI9-M4	Wall bushing	per axis for Mitsubishi
WDF.HH9-M4	Wall bushing	per axis for Heidenhain
WDF.F9-FAc	Wall bushing	for Fanuc Robodrill, 4th axis
WDF.F9-FAc2	Wall bushing	for Fanuc Robodrill, 5th axis

Item no.	Designation	Weight [kg]
WDF.lo	Air/oil	0.09
WDF.h	Hydraulics (2 fluted)	
WDF.M4-9xx	Mating connector, without cabling	

Standard items included in delivery

Always supplied as standard (except Fanuc Robodrill)

FANUC Robodrill

Automatic parameter setting by program (included in delivery)

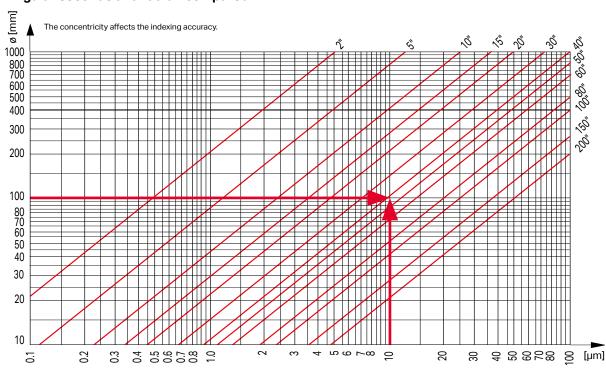
Item no.	Designation	Dimensions
KAB.F9-5.0-FAc	Fanuc DD, fully cabled	Robodrill

Supplied with FANUC interface, compatible with FANUC DDR

Machine preparation

- 80A servo required
- Additional CNC options may be needed, for instance, for rotating function, radius compensation, constant cutting speed, pole detection, 5-axis function for simultaneous operation
- PLC must be prepared and adapted accordingly

Elasticity of tilting axes TAP5** (guideline values for pitch error)


	Unloaded	Standard load sls _{cube} *
0° to 90° [arcsec]		
T1-913520 TAP5	-19	+1
T1-915520 TAP5	-19	+22
T1-913520 TAP5v	-55	-45
T1-915520 TAP5v	-55	-32

Explanation: The pitch error corrects the positioning error resulting from elasticity caused by the eccentric load of the rotary axis on the tilting axis.

Recommendation: In order to achieve the best possible accuracies, we always recommend compensating for the gear backlash and the pitch error (5th axis) with the CNC control unit and/or by using a direct measuring system (option, p. 32). A tilting range of 180° results in other compensation values; please contact the factory if necessary.

Concentricity error µ

Angular seconds and radian compared

Example: Workpiece-ø 100 mm, concentricity error 0.01mm =

additional error on workpiece up to approx. 41

^{**} Tilting axes with direct drive do not have a pitch error

For the highest indexing accuracy: Fully encapsulated, leak-proof, protected against impact, adjusted with high precision

Measuring method used to determine the gear unit's accuracy to VDI/DGQ 3441 or ISO 230-2

- Measured at operating temperature of the unit after 5 warm-up cycles
- 5 measuring cycles
- 24 measuring points (15° increments)
- Acceleration 500°/s²

- All measured values apply in unloaded condition at room temperature approx. 22 °C
- The values WITHOUT load apply

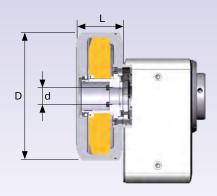
Attention: Due to the influence of environmental factors during the measurement (temperature, vibration, etc.), the recorded measurement error may exceed the catalog limit value by up to 10%.

Attachment variants of the direct measuring system

Applicable depending on the selected direct measuring system (see p. 33)

WMS.520-Vor2

WMS.520-Vor7



WMScompact (WMS.520-VorCX)

Example WMS with DDF * see **p. 35**

«What you measure is what you get» – how to produce more accurately with 3+2 than with many 5-axis machining centers

	L	D	d
		[mm]	
WMS.520-VorCX	35.9	165	46
WMS.520-VorCH	34.5	180	50
WMS.520-Vor2	91.6		
WMS.520-Vor7	87		46

Direct measuring system required for series 900

	Preparation	Measuring system
Fanuc	WMS.91x-VorFA	WMS.91x-FA
Mitsubishi	WMS.91x-VorMI	WMS.91x-MI
		WMS.91x-HH
Heidenhain / Siemens	WMS.91x-VorHH	WMS.91x-HH+ (increased accuracy)
		WMS.91x-HHvss

Alternative to direct measuring system

for tilting axis with TAP5(v) only

Optional increased mechanical gear accuracy **GET.5xx-GEN** For data, see respective rotary table on **p. 20–27**

Option: Additional cable for retrofitting direct measuring system

KAB.WMS-14.0-o

Cable run in flexible tubing, 14 m long, without connector

Size and accuracy: wide range for different controls and interfaces

Fully automated measuring system for indexing accuracy measurement

Selecting the direct measuring system

	Encoder kit Item no.	Preparation Item no.	Incremental	Absolute	1Vss	TTL	EnDat02	Siemens driveCliq	Fanuc	Mitsubishi	System	Indexing	comp.*	Туре	Read head	
	WMS.xXM-75T	WMS.520-VorCX	х		х						Renishaw Line	± 10"	± 3"	REX	1	5
	WMS.xXM-75.1T	WMS.520-VorCX	х			х					count 11840,	± 10"	± 3"	REX	1	5
	WMS.xXM-75.2T	WMS.520-VorCX	х			х					or 20 µm pitch	± 2.5"	± 1"	REX	2	5
	WMS.xXA-75	WMS.520-VorCX		х					х	Х	Renishaw Line	± 10"	± 3"	REX	1	5
	WMS.xXA-75.1	WMS.520-VorCX		х				х			count 11840,	± 10"	± 3"	REX	1	5
	WMS.xXA-75.2	WMS.520-VorCX		х				х			or 20 µm pitch	± 2.5"	± 1"	REX	2	5
	WMS.RU97A	WMS.520-Vor2		х				х				± 2.5"		RU97A	built-in	3
	WMS.RU77F	WMS.520-Vor2		х					х		Magnescale	± 2.5"		RU77	built-in	4
	WMS.RU77M	WMS.520-Vor2		х						Х		RU77	built-in	4		
table	WMS.91x-HH	WMS.520-VorCH		х			Х					± 12"		ECA 4410	1	5
ta	WMS.91x-HH+	WMS.520-VorCH		х			Х					± 8"		ECA 4410	1	5
Rotary	WMS.285	WMS.520-Vor2		х	х							± 5"		RON 285	built-in	0
윤	WMS.287	WMS.520-Vor2		х	х							± 2.5"		RON 287	built-in	0
	WMS.2381	WMS.520-Vor2		х			Х					± 4"		RCN 2381	built-in	0
	WMS.2581	WMS.520-Vor2		Х			х					± 2"		RCN 2581	built-in	0
	WMS.275T	WMS.520-Vor2	х			х					Heidenhain	± 5"		RON 275	built-in	1
	WMS.8391F **	WMS.520-Vor7		х					х			± 2"		RCN 8391F	built-in	2
	WMS.8391M **	WMS.520-Vor7		х						Х		± 2"		RCN 8391M	built-in	2
	WMS.8381 **	WMS.520-Vor7		х			х					± 2"		RCN 8381	built-in	2
	WMS.8591F **	WMS.520-Vor7		х					х			± 1"		RCN 8591F	built-in	2
	WMS.8591M **	WMS.520-Vor7		х						х		± 1"		RCN 8591M	built-in	2
	WMS.8581 **	WMS.520-Vor7		х			х					± 1"		RCN 8581	built-in	2

^{*} Sine error compensated for individually by customer**

HEIDENHAIN

Heidenhain RxN 2xxx Passage: ø20

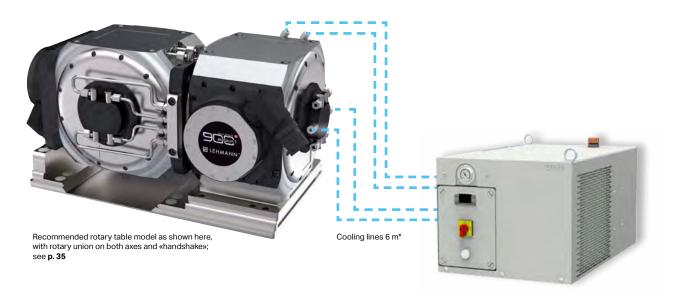
Heidenhain RxN 8xxx Passage: ø60

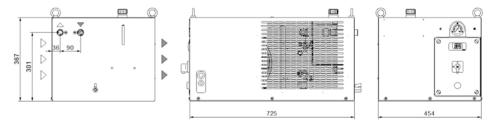
Magnescale

Magnescale RU 97

Magnescale RU 77

RENISHAW.


Renishaw


^{**} not available for 507/508

Recommended cooling units (e.g. for high-speed dry machining)

Temperature module for machines with SIEMENS, Mitsubishi and Heidenhain CNC

OLAER cooling unit

Order items

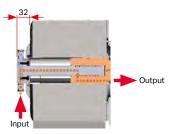
Item no.	Designation
AGG.OL-CW12*	OLAER Minichiller CW12, net cooling capacity approx. 1'300 W, incl. cooling lines and connection to rotary table

^{*} Installation by customer or on request by pL LEHMANN (e.g. in the course of commissioning)

Temperature protection module (for Siemens, Mitsubishi and Heidenhain)

Item no.	Designation
MOT.Temp	IMTHP module incl. connecting stranded wire 24V

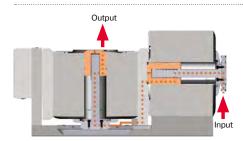
If a rotary table with wall bushing (WDF) is ordered, a thermal protection module is always included



Rotary union

- up to 250 bar at max. 80 rpm (air and oil) or up to 6 bar at max. 1500 min (only air)
- low-maintenance, compact
- simple, suitable for retrofitting

Rotary union for EA rotary tables



Rotary union, 4- or 6-fluted

DDF 4-fluted

Rotary union for T-type rotary tables

TAP9: with rotary union, 4-fluted

Permissible operating parameters

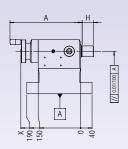
up to 250 bar at max. 80 rpm (air and oil) or up to 6 bar at max. 1500 min (only air)

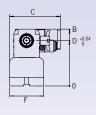
Pressure-speed data for rotary union

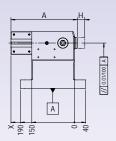
Avoid high and longer lasting speeds under pressure if possible (greatly reduces seal life).
For safety reasons, we also recommend «pressureless clamping»

DDF.91x-04-d80

DDF.91x-0x


DDF.91x-04-d80

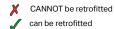



DDF.91x-04-KK5

Order items

Item no.	Designation
DDF.91x-04	Rotary union, 4-fluted, 6 bar, oil/air, for EA and indexing axis, high-speed
DDF.91x-04-d80	Rotary union, 4-fluted, 6 bar, incl. spindle adapter Ø80, high-speed
DDF.91x-04-KK5	Rotary union, 4-fluted, 6 bar, incl. spindle adapter KK5, high-speed
DDF.91x-06	Rotary union, 6-fluted, 250 bar, oil/air, for EA
DDF.91x-06-KK5	Rotary union, 6-fluted, 250 bar, incl. spindle adapter KK5
DDF.91x-06-TAP9	Rotary union, 6-fluted, 250 bar, oil/air, for swiveling/tilting axis (4 media channels)
DDF.918-06-TAP9v	Rotary union, 6-fluted, 250 bar, oil/air, for swiveling/tilting axis (4 media channels)
DDF.520-06-TAP5	Rotary union, 6-fluted, 250 bar, oil/air, for swiveling/tilting axis (4 media channels)
DDF.520-06CH-TAP5	Rotary union, 6-fluted, 250 bar, oil/air, for tilting axis (4 media channels) WMS compact Heidenhain
DDF.EA-91x-AGG	Loose accessories, 2-passage for cooling unit
DDF.TxP9-DDF	Piping (handshake), 4-6-fluted, for rotary union
DDF.TxP9-SPZ	Piping (handshake), max. 4-fluted, for release cylinder
DDF.TxP9-AGG-2	Piping (handshake) TAP9, 2-passage, for cooling unit
DDF.TxP5-AGG	Piping (handshake) TAP5, 2-passage, for cooling unit

measured without load, quill extended halfway


Standard design for all types = right-handed version (as shown)

				Α	В	С	F	Н			Weight	V	
		Item no.	Designation	[mm]	[mm]	[mm]	[mm]	[mm]	Manual	pneumatic 2)	[kg]	×	✓
		RST.COM-110m 3)	COMPACT tailstock	222	128	130	100	30	•		11		•
	110	RST.LIG-110m	LIGHT tailstock	255	150	142	120	40	•		20		•
		RST.LIG-110p-2 1)	LIGHT tailstock	225	130	184	120	40		•	20		•
臣		RST.COM-150m 3)	COMPACT tailstock	222	168	130	100	30	•		16		•
트	150	RST.LIG-150m	LIGHT tailstock	255	190	142	120	40	•		25		•
걸		RST.LIG-150p-2 1)	LIGHT tailstock	238	190	184	120	40		•	25		•
igi	180	RST.LIG-180m	LIGHT tailstock	255	220	142	120	40	•		30		•
Center height D [mm]	100	RST.LIG-180p-2 1)	LIGHT tailstock	238	220	184	120	40		•	30		•
ᄩ	220	RST.LIG-220m	LIGHT tailstock	255	260	142	120	40	•		35		•
ပ္	220	RST.LIG-220p-2 1)	LIGHT tailstock	238	200	184	120	40		•	35		•
	235	RST.LIG-235m	LIGHT tailstock	255	275	142	120	40	•				•
	280	RST.LIG-280m	LIGHT tailstock	255	040	142	120	40	•		42		•
	280	RST.LIG-280p-2 1)	LIGHT tailstock	238	310	184		40		•	42		•
	es	RST.L-m	Left-hand version, manual										•
	ö	RST.L-p	Left-hand version, pneumatic									•	
	ess	RST.R-pmh	pneumatic, with manual lever valve									•	
	Acc	RST.L-pmh	Left-hand version, pneuma	Left-hand version, pneumatic, with manual lever									
	Tailstock Option / Accessories	RST.Hub-p	Stroke monitoring for tailstock (pneumatic), free cable ends 5 m of which 4.5 m in flexible tubing; stroke 5 mm shorter								0.73	•	
	g	RST.SPI-MK2s	Fixed center, hardened steel MK2									•	
	Š	RST.SPI-MK3s	Fixed center, hardened ste	Fixed center, hardened steel MK3									•
	Sto	RST.SPI-MK2hm	Fixed center, HM use					MK2					•
	<u>a</u>	RST.SPI-MK3hm	Fixed center, HM use					MK3			0.37		•

 $\textbf{All LIGHT tailstocks:} \ \mathsf{Parallelism} \ \mathsf{of} \ \mathsf{quill} \ \mathsf{axis} \ \mathsf{to} \ \mathsf{alignment} \ \mathsf{groove} \ \mathsf{adjustable}$ thanks to zentriX system (see operating manual)

 $^{\rm 1)}$ Delivered as standard without manual lever valve. Can be ordered as option. $^{\rm 2)}$ Impact force approx. 660...2,000 N at 2...6 bar air pressure $^{\rm 3)}$ Delivered with center height +/-0.01 mm

Morse taper size (DIN 228) - COMPACT = MK 2 - LIGHT = MK 3

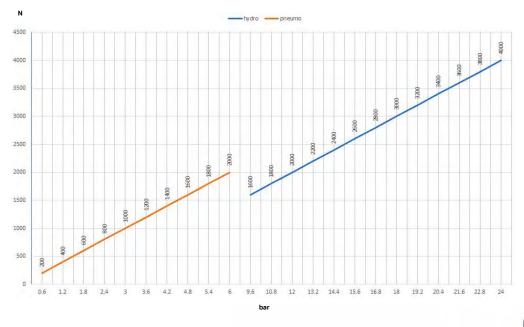
Suitable alignment elements

Item no.	Designation	Slot width	Weight [kg]		
AUR.zX-12		12g6	0.10		
AUR.zX-14	zentriX alignment	14g6	0.10		
AUR.zX-16	pin, 1 pair	16g6	0.11		
AUR.zX-18		18g6	0.12		
AUR.St-12		12g6	0.07		
AUR.St-14	Alignment T-slot	14g6	0.07		
AUR.St-16	nuts, 1 pair	16g6	0.07		
AUR.St-18		18g6	0.07		

Is included in corresponding LOZ.RST. See ${\bf p.\,39}$

Possible alignment elements

Revolving centers see p. 111



Pneumatic version (right-hand)

Pneumatic version (right-hand) with manual lever valve (option)

Pressure-force diagram

Align and secure correctly on the machine table:

lineFIX and zentriX

Nut

zentriX alignment system (example: tailstock on longFLEX)

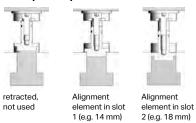
Rotating the Allen wrench (A) pushes the tailstock against the base plate (B) by means of an eccentric screw. Once the desired position is reached,

Item no.	Designation	Slot width	Weight [kg]
AUR.zX-12		12g6	0.10
AUR.zX-14	zentriX alignment	14g6	0.10
AUR.zX-16	pin, 1 pair	16g6	0.11
AUR.zX-18		18g6	0.12

available for ...

All longFLEX versions

All tailstocks


roller Washer Screw

lineFIX alignment system for T-type rotary tables (not for TIP)

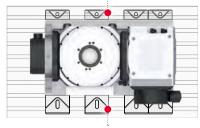
As a standard feature, every T-type rotary table has one $\mbox{\bf lineFIX}$ pin (for a slot width of 14 or 18 mm). Every base plate has a hole pattern that matches a T-slot spacing of 100 mm and 125 mm. After being set up initially with the **lineFIX** pin, the rotary table undergoes final adjustment and is then secured in position using these holes.

Principle of operation

the eccentric screws is secured with a hexagon nut

(C). Finished. For additional information, please refer to the installation and commissi-

oning instructions at: www. lehmann-rotary-tables.com


Item no.	Designation	Slotwidth	Weight [kg]
AUR.iX-12-16	Option (2 pieces)	12/16	
AUR.iX-14-18	Standard (2 pieces)	14/18	0.03
LOZ.Bride-L	Long clamps, for 63/12 pattern*	25 grid	0.93

* When installed properly as described in the operating manual, the hold-down force per clamping claw (short or long) is 20 kN.

Version with clamping claws

If no hole pattern matches the slots, the rotary table can be secured by means of clamping claws.

Short clamping claws (standard scope of delivery)

Long claw clamp (item no.: LOZ.Bride-L): for making adjustments when mounting in intermediate positions.

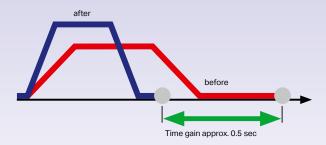
Everything included

ltem no.	For machine	For product	Maintenance unit	Clamps, steel plugs	Gear oil, clamps, steel plugs	Fastening material on machine table (screws, T-slot nuts)	Alignment slot nut (1 pair)
LOZ.91x-EA	neutral	EA-91x	х	х		х	
LOZ.91x-TAP5	neutral	T1-91x520 TAP5(v)	x		x	х	
LOZ.91x-TAP9	neutral	T1-91x91x TAP9(v)	x	x		x	
LOZ.DMG-TAP9	DMG Mori DMP Series	T1-91x91x TAP9(v)		x		x	
LOZ.FAN-EA9	Fanuc Robodrill	EA-91x		x		x	
LOZ.FAN-TAP5	Fanuc Robodrill	T1-91x91x TAP5(v)	x		x	x	
LOZ.FAN-TAP9	Fanuc Robodrill	T1-91x91x TAP9(v)		x		x	
LOZ.LEA-TAP9	Leadwell V series	T1-91x91x TAP9(v)	x	x		x	
LOZ.Nute14-TAP9	Fanuc Robodrill, Brother	TAP9, 14 mm				x	
LOZ.Nute18-TAP9	DMG Mori, Akira, Doosan,	TAP9, 18 mm				x	
LOZ.RST-14*		LIGHT tailstock, 14 mm				x	
LOZ.RST-14St**		LIGHT tailstock, 14 mm				x	x
LOZ.RST-18*		LIGHT tailstock, 18 mm				x	
LOZ.RST-18St**		LIGHT tailstock, 18 mm				x	x

 $^{^{\}star}$ with zentriX alignment system (instead of alignment slot nut) and with a fixed center MK3 ** with fixed center MK3

Maintenance unit

Clamps, steel plugs

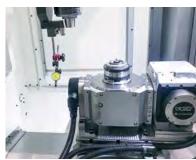

Gear oil, clamps, steel plugs

Fastening material on machine table (screws, T-slot nuts)

We support you from A to Z, whether you have problems or when it's a matter of optimization

Optimization of the cycle time (CMS position)

Commissioning Service


Commissioning of new machines with controls from Siemens, Fanuc, Mitsubishi, Mazak. In addition to basic commissioning (see p. 43), we optimize for positioning and simultaneous operation through our application support on request.

Improved application, optimal adjustment of rotary table and machine, higher productivity

For item no., see p. 44

Maximum productivity requires that your application be taken in account – we can help you

Optimally clamped? We can also provide on-site assistance in this regard.

Helpline Service

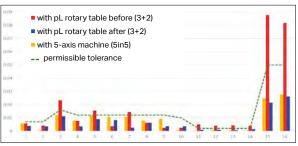
Telephone service from 7:30 a.m. - 12:00 noon and 2:00 p.m. - 5:00 p.m. as well as 24-h/5 telephone emergency service for all pL service centers

- Technical assistance
- Diagnostic support
- Organizing factory and field service
- Taking spare part orders

Goal

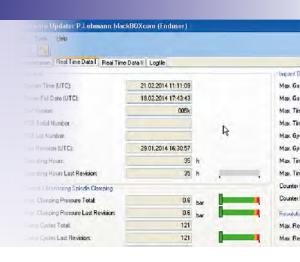
To help quickly, competently and unbureaucratically

Application Support


Experience has shown: A considerable improvement in time needed per piece and workpiece accuracy are almost always possible.

- Adjustments for spindle operation
- Reliable clamping control.
- General support for lathing/milling operation with BR900
- Safeguarding the equipment against overheating
- Support with PLC adjustments
- Clamping the workpiece correctly, optimizing machining processes
- Improving workpiece accuracy (alignment, 0-point...)
- Fine-tuning of drives and CNC parameterization

Goal


To extract the maximum, improve efficiency, lower workpiece costs, increase workpiece accuracy

For item no., see **p. 44**

Errors at the measuring points before and after APS **precision** for 3-D machining.

We also support you after the purchase to ensure high availability of your equipment

Active Service1)

1) an excerpt from our Active Services; please contact us for additional options

Easy Check

- Visual inspection
- Hose check
- Read and evaluate blackBOX data
- Status report with recommendation

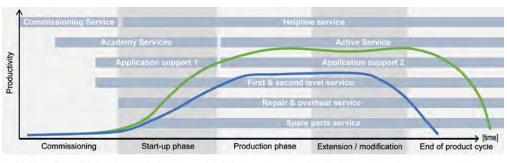
Facts

- Without maintenance contract
- We schedule the region on our own
- Then notify the intended customers of the pending visit
- Customers can decide yes or no

Benefits

- Prevention helps to minimize expensive downtime
- Travel costs are prorated
- The customer does not need to think about it
- No contract, you are free to decide annually
- Based on the worldwide practical experience of pL

Goal


Prevent downtime, eliminate stress and costs, extend the service life \rightarrow Prevention instead of reaction

Status report with recommendation

LifeCycle Services: Increased productivity over the life of your machine ...

Productivity with LifeCycle service products from pL LEHMANN Productivity without service support

Working productively and without problems from day 1: the correct commissioning is decisive

Investigations have shown that 70% of problem situations during the warranty period can be prevented through careful and professional commissioning. At the same time, it was

obvious that productivity could be increased significantly through use of application service. Make use of our services!

Basic commissioning

Goal

Rotary cable connected and parameterized, ready for production

Activities

- Mechanical assembly of the rotary table on the machine table
- Alignment of the rotary axes with respect to the main axes of the machine
- Kinematics setting/check
- Electrical connection of the rotary table on the machine
- Basic parameterization using pL parameter lists, at least with usual values, but possibly to customer requirements
- Brief customer training

Prerequisite

- Machine must be prepared appropriately (servo, control cabinet cabling, connectors, PLC, CNC with readily available 4th and/or 5th axis/axes; or can be ordered from pL LEHMANN (depending on machine; PLC not possible)
- During commissioning, a qualified technician from the machine supplier may be need to be present (parameter adjustments, possibly adjustment of the PLC etc.); organized and paid by customer, contact us with the request.

Commissioning of servopack

Goal

Connection of the rotary table and adjustment to customer requirements if possible, incl. integration of the Servopack retrofit kit

Activities

- ServoPack installation with cabling in control cabinet up to enclosure wall
- Mechanical assembly of the rotary table on the machine
 table.
- Alignment of the rotary axes with respect to the main axes of the machine
- Kinematics setting/check
- Electrical connection of the rotary table on the machine
- Basic parameterization using pL parameter lists, at least with usual values, but possibly to customer requirements
- Brief customer training

Prerequisite

- Machine must be prepared appropriately (CNC has readily available 4th and/or 5th axis, PLC is prepared)
- During commissioning, a qualified technician from the machine supplier may be need to be present (parameter adjustments, possibly adjustment of the PLC etc.); organized and paid by customer, contact us with the request.

Application support

Goal

Rotary table settings optimized for customer application (time optimization and/or accuracy improvement)

Activities

- Calculation based on rotary table and workpiece (what is possible)
- Check of the geometry, and correct as much as possible
- Check whether the clamping control functions correctly and is not active before the intended position is actually reached
- Check of dividing/indexing errors (0–90° relatively simple; possibly with portable measuring instrument)
- Check of clamping/load placement (no overly eccentric loads, improper clamping), and of the machining sequence and the control response (smooth control)
- Optimization for specific workpiece, incl. clamping device and machining strategy (may require considerably more effort for simultaneous machining; invoiced separately)
- Kinematics setting/check
- PLC adjustments (where possible) for spindle operation, secure clamping, workpiece clamping)
- Expenses such as travel time, travel costs, hotel and meals are calculated on the basis of actual cost

Prerequisite

 Programming system must be prepared appropriately (e.g. for simultaneous operation)

	Item no.	Data	Description
ro- es	INB.1AX9-APS	max. 20 h, 1-axes	Application support
-type y tabl	INB.1AX9-CMS	basic, max. 15 h, 1-axes	Commissioning of integrated axes
tar EA	INB.1AX9-SP	max. 20 h, 1 axes	Commissioning of servopack
-o-l	INB.2AX9-APS	max. 30 h, 2-axes	Application support
type y	INB.2AX9-CMS	basic, max. 25 h, 2-axes	Commissioning of integrated axes
혈고	INB.2AX9-SP	max. 30 h, 2 axes	Commissioning of servopack
with pL CNC	INB.MF	max. 15 h on-site	Commissioning of M-function

Test machining

Preparation

- Checking feasibility
- Determining tool and machining data with tool supplier where applicable
- Creating schedule

Implementation - at the factory with the customer present

- Explaining solution of the application
- Machining and inspecting workpieces
- Measuring equipment provided by the customer or customer takes workpieces along for the measurement

High geometric accuracies as standard, combined with a high level of rigidity and stability And for the most demanding requirements:

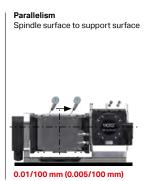
() values = increased accuracy. Item no.. GEO.5xx-GEN

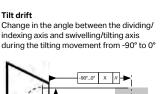
1/2 tolerance as an option

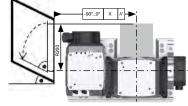
The tolerances given below apply under the following conditions:

- 1. The rotary table is mounted as specified in the commissioning instructions
- 2. The measurement is carried out on a calibrated granite plate (all machine errors are excluded)
- 3. The rotary table is not subjected to any outside thermal influences (sun, fans, heaters...)
- 4. Prior to the measurement, the rotary table and the measuring and test equipment have been in the same environment for at least 24 h
- 5. All measured values are determined for an unloaded rotary table

Geometry of EA rotary tables




Center height


Geometry of T1 rotary tables

0.01/R150 mm (0.005/R150 mm; applies

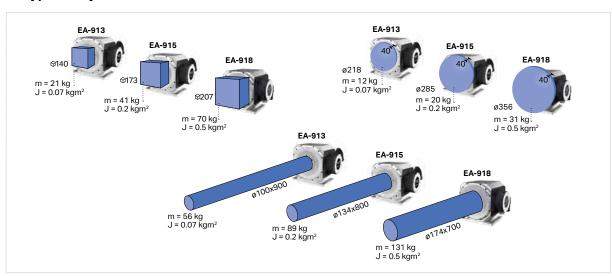
For all rotary tables

Radial and axial run--out for all rotary table

- measured at spindle nose
- Axial concentricity on largest diameter
- Radial concentricity of inner bore as well as

0.006 mm (0.003 mm)

All drive data of pL-LEHMANN rotary tables have been designed for the following standard spindle


- For intermittent service S3 ED 40%
- Cycle duration 10 minutes

Different conditions require the drive data to be adjusted (acceleration, jerk limitation, speed).

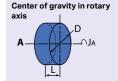
Reference values for duty cycle (ED)

- For normal rotary table work such as milling / boring (mainly positioning) approx. 20%.
- For milling / boring in intensive mixed operation (positioning / feed machining): approx. ED 40%
- For profile and depth grinding approx. ED 60% / simultaneous machining, 5-axis
- For engraving and operations in spindle mode approx. ED 80-100%.
- Mixed operation with turning and simultaneous machining, power skiving approx. duty cycle of 40-60%

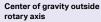
EA-type rotary table

T1-type rotary tables (TAP)

Calculating loads, forces and moments of inertia, avoiding risks and damage

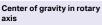


We are here to help


Request a proposal and we will gladly prepare you an offer for your individual calculation up to and with a specific list of parameters. Contact your closest pL LEHMANN representative. We are here to help.

Calculation of the load on the dividing/indexing axis

(using Steiner's theorem)



- D: Outside diameter of the
- L: Length of the round bar [m]
- p: Density [kg/m³]
- m: Mass of the round bar [kg]
- J.: Moment of inertia [kgm²]

- D: Outside diameter of the round bar [m]
- L: Length of the round bar [m]
- Turning radius [m]
- p: Density [ka/m3]
- m: Mass of the round bar [kg]
- J_a: Moment of inertia of the round bar at center A [kgm²]
- J: Moment of inertia [kgm²]

Center of gravity in rotary

- Outside diameter of the cylinder [m]
- d: Bore diameter of the cylinder [m]
- L: Length of the round bar [m]
- Density [kg/m³]
- m: Mass of the cylinder [kg]
- J_a: Moment of inertia [kgm²]
- a: Side length [m]
- Side length [m]
- Side length [m]
- Density [kg/m³]
- J_A: Moment of inertia [kgm²]
- $m = a \cdot b \cdot L \cdot p$ $J_A = \frac{1}{12} m (a^2 + b^2)$

 $J_A = \frac{1}{9} m (D^2 + d^2)$

- Side length [m]
- Side length [m]
- Side length [m]
- Density [kg/m³]
- r: Turning radius [m] J_a: Moment of inertia [kgm²]
- $m = a \cdot b \cdot L \cdot p$
- $J_A = \frac{1}{12} m (a^2 + b^2 + 12r^2)$

 $m = \left(\frac{D^2 \cdot \pi}{4} \cdot L \cdot p\right) - \left(\frac{d^2 \cdot \pi}{4} \cdot L \cdot p\right)$

Dividing/indexing axis

Swivelling/tilting axis

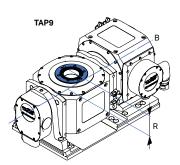
Radius between swivelling/tilting axis and spindle nose of dividing/indexing axis [m]

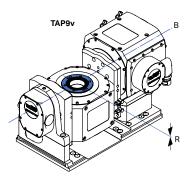
Center distance [m]

= Mass [kg]

Torque calculated from $m \times g \times Rs$ [Nm]

Torque acting on the swivelling/tilting axis caused by the dead weight of the dividing/indexing axis [Nm]


Acceleration due to gravity 9.81 [m/s²]


Densities of different materials x dynamic speed (p)

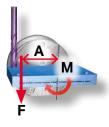
Steel 7.85 x 103 kg/m3 Cast iron 7.85 x 103 kg/m3 Aluminum $2.7 \times 10^3 \, kg/m^3$ Copper

 $8.94 \times 10^3 \, kg/m^3$ 8.5 x 10³ kg/m³

Calculation of the load on the swivelling/tilting axis

Distance R

Rotary table	R [mm]	Limited torques [Nm]
T1-91x915 TAP9	69.5	36
T1-91x918 TAP9v	0	77
T1-91x520 TAP5	69.5	100
T1-91x520 TAP5v	0	100


Calculation of the torque in the tilting direction (without intrinsic torque of the dividing/indexing axis):

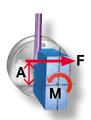
Rs = R + L/2 $M = m \times Rs \times g$

Calculation of the total torque in the tilting direction (with intrinsic torque of the dividing) indexing axis):

M tot = M + Me (Me represents the gear unit loading without load)

Drilling

	Wz ø	Cutting speed	Feed F	Feed force F [N]		
Tool type	[mm]	[m/min]	[mm]	CK45	X5CrNi18-10	AlMg4.5Mn0.7
		220	0.12	920		
Twist drill VHM	5	120	0.10		1120	
		350	0.15			315
	10	220	0.27	1'450		
Twist drill VHM		120	0.18		1'900	
		350	0.2			650
		220	0.35	2'850		
Twist drill VHM	17	120	0.25		3'980	
		350	0.3			1'250
WP drill	38	140	0.09	4'350		
		100	0.08		6'550	
		180	0.16			2'800


F

End milling and slot milling

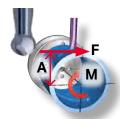
	Wzø	Cutting	Cutting Feed Depth of Cutting speed F cut width		Feed force F [N]			
Tool type	[mm]	[m/min]	[mm]	[mm]	[mm]	CK45	X5CrNi18-10	AlMg4.5Mn0.7
	_	180	0.09 x 4	4	8	840		
End milling cutter V	8	70	0.06 x 4	4	8		410	
cutter v		570	0.15 x 4	4	8			360
		180	0.11 x 4	6	12	1'100		
End milling cutter V	12	70	0.07 x 4	6	12		700	
cutter v		570	0.17 x 4	6	12			550
		180	0.095 x 4	10	20	1'550		
End milling cutter V	20	70	0.08 x 4	10	20		1'400	
Cutter V		570	0.17 x 4	10	20			950

Hobbing

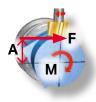
	Wz ø	Cutting speed	Feed F	Depth of cut	Cutting width		Feed force F [N]	
Tool type	[mm]	[m/min]	[mm]	[mm]	[mm]	CK45	X5CrNi18-10	AlMg4.5Mn0.7
		200	0.09 x 4	8	4	510		
End milling cutter V	8	77	0.06 x 4	8	4		420	
cutter v		627	0.15 x 4	8	4			360
		200	0.11 x 4	12	6	1'050		
End milling cutter V	12	77	0.07 x 4	12	6		700	
Cutter V		627	0.17 x 4	12	6			550
		200	0.15 x 4	20	10	2'700		
End milling cutter V	20	77	0.08 x 4	20	10		1'350	
JU.1.01 V		627	0.17 x 4	20	10			950

Turning

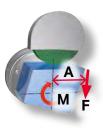
	Turning ø	Cutting speed	Feed			Cutting force [N]		
			F	Depth of cut				
Tool type	[mm]	[m/min]	[mm]	[mm]	CK45	X5CrNi18-10	AlMg4.5Mn0.7	
Corner		250	0.3	2	541			
lathe tool	40	140	0.25	2		286		
WP		500	0.4	3			65.6	


Factory information from well-known tool manufacturers (applies to new tool cutting edges)

Corner milling (slab milling or plane milling)


	Wzø	Cutting	Feed	Depth of	Cutting		Feed force F [N]	
Tool type	[mm]	speed [m/min]	F [mm]	cut [mm]	width [mm]	CK45	X5CrNi18-10	AlMg4.5Mn0.7
		160	0.12 x 6	2	40	1'750		
Angular milling 40 cutter WP		160	0.12 x 6	2.5	25	1'250		
	40	85	0.12 x 6	2	40		1'550	
		85	0.12 x 6	2.5	25		1'150	
		500	0.15 x 6	3	40			1'250
		210	0.15 x 10	3.5	80	4'900		
		240	0.15 x 10	7	40	4'900		
Angular milling	80	160	0.08 x 10	3.5	80		3'450	
cutter WP	80	176	0.08 x 10	7	40		3'450	
outtor W		450	0.2 x 10	3.5	80			3'100
		495	0.2 x 10	7	40			3'100

Ball end milling


	Wz ø			Depth of	Cutting width	Feed force F [N]		
Tool type	[mm]	speed [m/min]	[mm]	cut [mm]	[mm]	CK45	X5CrNi18-10	AlMg4.5Mn0.7
Ball end		220	0.1 x 2	1.0	1.0	60		
milling	6	100	0.08 x 2	0.8	0.8		35	
cutter		530	0.15 x 2	2.0	2.0			50
Ball end		220	0.14 x 2	1.3	1.3	100		
milling	12	100	0.11 x 2	1.0	1.0		65	
cutter		530	0.16 x 2	3.0	3.0			85

Mill turning

	Wzø	Cutting	Feed	Depth of		Feed force F [N]			
Tool type	[mm]	speed [m/min]	F [mm]	cut [mm]	width [mm]	CK45	X5CrNi18-10	AIMg4.5Mn0.7	
Angular		130	0.12 x 6	5	1mm / 360°	435			
milling	40	85	0.12 x 6	5	1mm / 360°		390		
cutter		500	0.12 x 6	5	1mm / 360°			193	

Grinding

	Grinding capacity	Feed force F [N]			
Tool type	[kW]	CK45	X5CrNi18-10	AIMg4.5Mn0.7	
Ceramic grinding wheel	40	2200			
	75	4130			
wheel					
CBN grin- ding wheel					

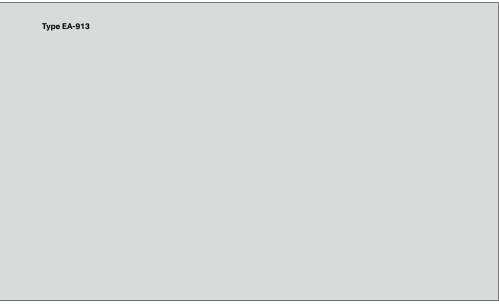
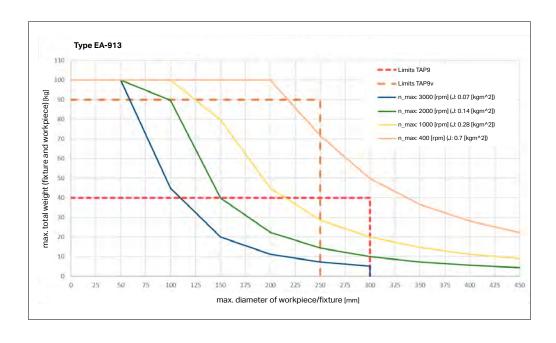
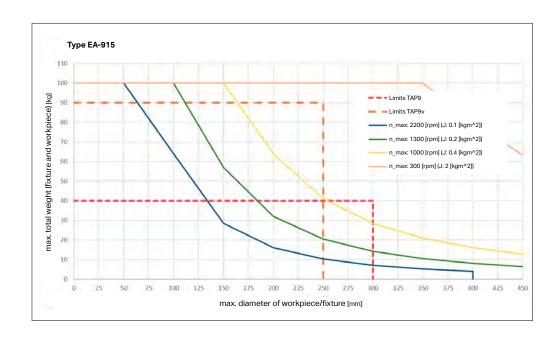


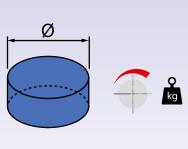

Diagram will be added at a later date.

Туре Е	:A-915			

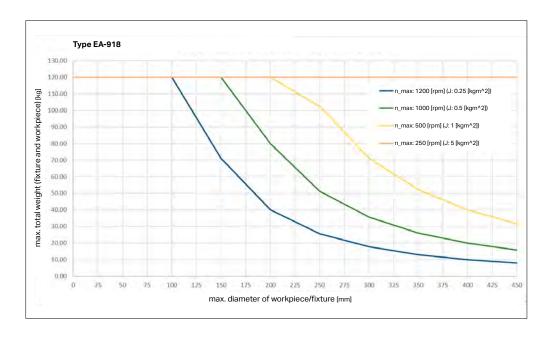
Diagram will be added at a later date.


Type EA-918		


Diagram will be added at a later date.

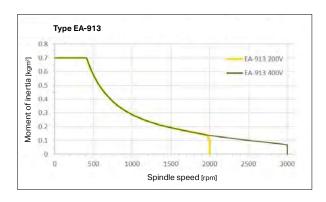

Overview & Facts

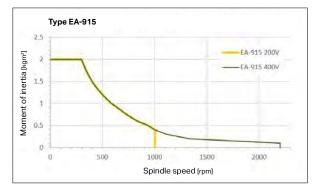
system & smartBox

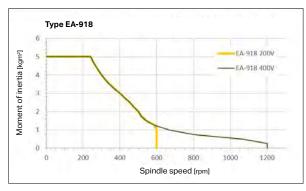

Speed limits in relation to weight and diameter

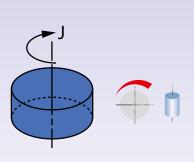
Overview

System & smartBox

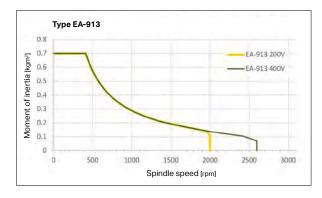

Rotary tables

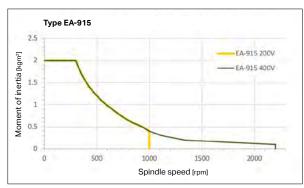

CNC, WMS

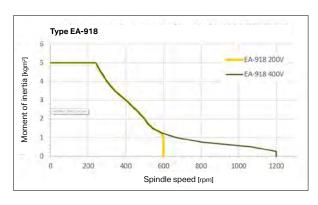

The permissible moment of inertia is dependent on speed, the CNC controller and the type of rotary table.

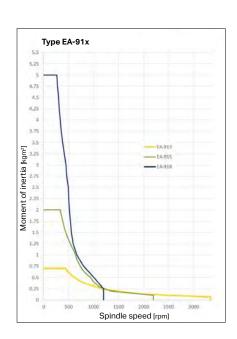

Balance workpieces, including clamping devices, at higher speeds! For more information, please refer to **p. 65**.

For Fanuc CNC (80A servo controller)

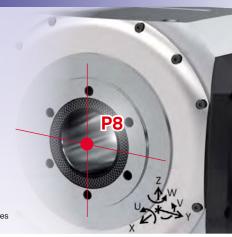







For Mitsubishi CNC

For Siemens and Heidenhain CNC


Overview & Facts

System & smartBox

Sotarytables

KAB, WDF,

RST. LOZ

P8 with EA-type rotary tables

Background Every material ha

Every material has a certain elasticity. Depending on the orientation and load, these affect the accuracy of machining in different ways. The figures and data shown here provide information on the values to be expected.

Optimization options

If the static stiffness is insufficient, the following may help:

- Error compensation in the axis direction affected
- Use of lighter clamping means
- Changing the machining strategy

Static mechanical analysis

Using FEM analyses, the compliance in P8 (see figure at right) was calculated in the respective configuration for all T-type rotary tables listed below. The deflections in the X- and Y-directions are usually negligible. The table below shows the deflection in the Z-direction. Depending on the workpiece weight, this information can be used to determine the approximate displacement.

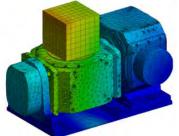
Compliance of EA-type rotary tables in P8 in Z-direction (approximate values)

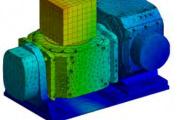
μm/kg	Rotary table fastened by means of bolting	Rotary table fastened by means of clamping claws		
EA-91x	-0.010	-0.008		

Compliance of T1-type rotary tables in P8 in Z-direction (approximate values)

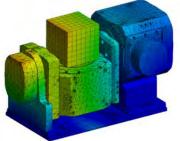
μm/kg	()°	9	0°
	TAP9	TAP9v	TAP9	TAP9v
T1-91x915	-0.017		-0.021	
T1-91x918		-0.018		-0.015

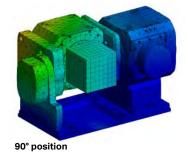
μm/kg	()°	90°		
	TAP5	TAP5v	TAP5	TAP5v	
T1-91x520	-0.022	-0.025	-0.035	-0.018	



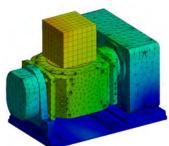


EΑ

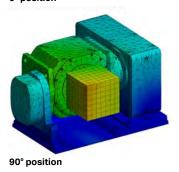

TAP9


0° position

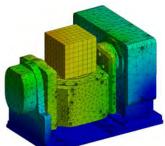
0° position

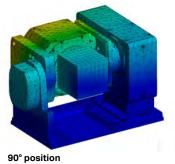


TAP9v



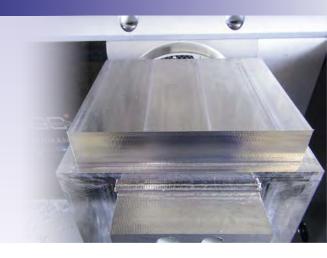
TAP5


90° position


0° position

TAP5v

0° position



Condition: Rotary table is mounted in the specified manner and both axes are clamped with 6 bar compressed air.

Optimizing vibration, tool wear, surface quality and machining capacity

The illustrations below always show mode 1

Dynamic analysis

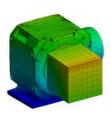
The eigenfrequencies were determined using FEM modal analyses. The compliance frequency response curves at the right show the result of the harmonic analysis. The first 9 vibration modes and eigenfrequencies of all rotary tables listed below were determined. Experience has shown the mode 1 and mode 2 are the most important in actual practice. These values can be found in the table below.

Optimization options

If the frequency of the machining process starts to increase, change the following:

- Tool speed
- Number of teeth on tool
- Machining strategy
- Workpiece orientation

Important notice: Shape, weight and the way the workpieces are assembled as well as the clamping devices used can significantly affect eigenfrequency.


Condition: Rotary table is mounted in the specified manner and both axes are clamped with 5 bar compressed air.

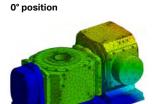
Example of machining frequency calculation

Angular milling cutter Ø40 mm, number of teeth 4, speed 1'900 rpm = $\frac{4 \times 1'900}{60}$ = 127 Hz

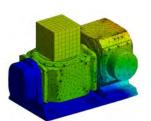
Eigenfrequency of EA-type and M-type rotary tables, mode 1 and 2 (approximate values)

Hz	Rotary table fastene	d by means of bolting	Rotary table fastened by means of clamping claws		
	without standard load	with standard load	without standard load	with standard load	
Mode 1	443	346	305	263	
Mode 2	727	473	498	379	

Overview 8. Eacts

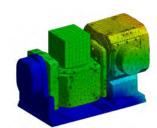

System &

Every object has several natural frequencies (so-called eigenfrequencies) that depend on the object's shape, mass and material. If the machining frequency matches an eigenfrequency, e.g. that of a rotary table, the result is chattering or whistling noises. A vertical machining center has its first eigenfrequency in the range of about 100 Hz. It is important that the machining frequency does not match the eigenfrequency.

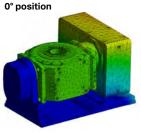

The illustrations below always show mode 1

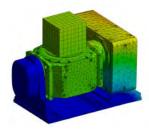
Eigenfrequency of TAP9-type rotary tables, mode 1 and 2 (approximate values)

Hz	without load				with load				
	TA	NP9	TA	P9v	TA	P9	TAI	P9v	
	0°	90°	0°	90°	0°	90°	0°	90°	
Mode 1	231	237	168	172	210	217	159	162	
Mode 2	347	347	196	196	325	340	196	196	

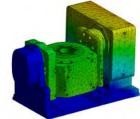

TAP9 without standard load in accordance with **p. 24**

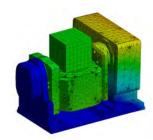
TAP9 with standard load in accordance with **p. 24**


TAP9v without standard load in accordance with **p. 25**


TAP9v with standard load in accordance with **p. 25**

Eigenfrequency of TAP5-type rotary tables, mode 1 and 2 (approximate values)

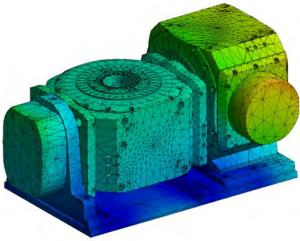

-	łz	without load				with load				
		TA	TAP5 TAP5v		P5v	TAP5		TAP5v		
		0°	90°	0°	90°	0°	90°	0°	90°	
	Mode 1	172	179	136	146	156	164	127	135	
	Mode 2	239	239	189	189	220	224	189	189	


TAP5 without standard load in accordance with **p. 26**

TAP5 with standard load in accordance with **p. 26**

TAP5v without standard load in accordance with **p. 27**

TAP5v with standard load in accordance with **p. 27**


Thermal deformation from the process and operation

Basics

Heat is generated by friction and electrical losses. The more intense and the longer a motion lasts, the more the temperature rises. Depending on the particular heat sources (motor, gear unit, seals, etc.,) the effects on dimensions differ greatly. At point P8 (see figure to the right), the relevant differences for the workpiece have been determined and are presented in the adjacent tables. The determination was made experimentally and with the aid of simulations.

Approximate values for estimating the deformations

Approximate values for estimating the thermally induced deformations are listed in the tables on the following pages. All values apply to L-versions; on the R-version, it must be kept in mind that the signs for the directions of rotation are reversed.

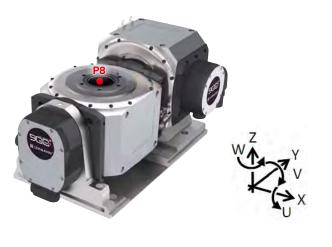
Thermally induced deformation in stationary state from the FEM simulation of the T1 91x915 TAP9, positioning application with ED 20%, without cooling lubricant and without cooling unit, deformation shown with 80x increase.

Influencing factors

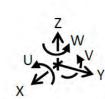
The thermally induced deformations occur in response to external (coolant, ambient air, etc.) and internal (gear unit, bearings, motor, etc.) thermal factors. The following factors require particular attention:

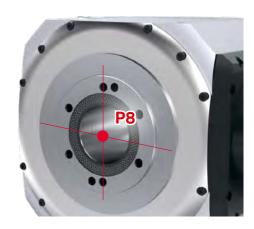
- Operating mode of the table (duty cycle, performance, etc.)
- Idle time between the work cycles
- Optional cooling plate (on request) for removing internal heat from the gear unit, bearings, etc.
- Machine table (thickness, size, material) and how the rotary table is mounted on it

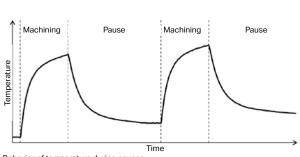
Example of reading the tables


For dry simultaneous machining with the T1-913915 TAP9, the table provides a displacement in V-direction at point P8 of 0 μm after 60 s after a cold start. This remains for the time being. After approx. 1 hour, a displacement of -1 μm occurs, increasing to -5 μm after 10 hours. Explanation of behavior: The temperature increases during longer use, causing the displacement.

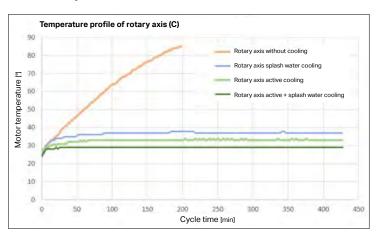
The displacements and rotations are evaluated at point P8, at the center of the spindle surface.

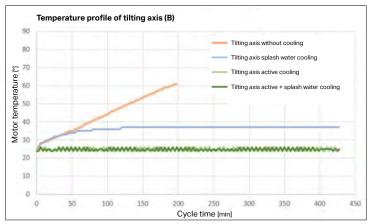

The best cooling is not a substitute for the


briefest possible workpiece clamping ...

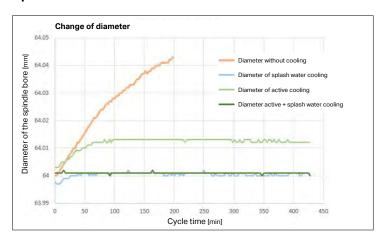


Important for precision machining

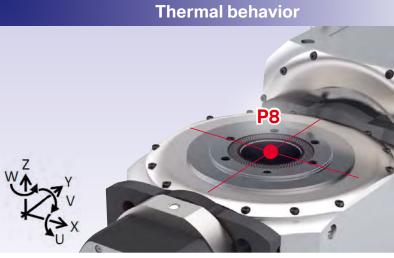

Maximum precision is achieved through use of coolant (KSS). Constant and uniform wetting of the rotary table is recommended. Interruptions in the use of coolant can result in accuracy fluctuations. The most effective heat removal is achieved with water-based coolants that are kept at a constant temperature and distributed uniformly. In addition, pauses and interruptions in machining between individual cycles should be avoided. Relevant cooling and thus deformations can occur even from pauses of one minute.



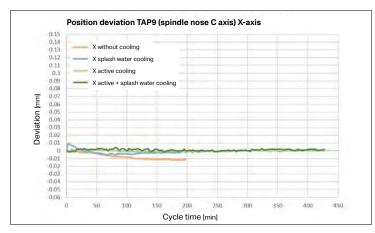
Behavior of temperature during pauses.

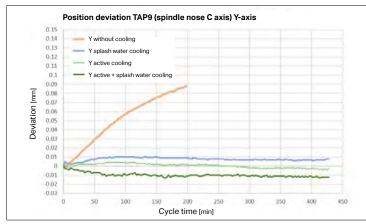

Thermal behavior with the different cooling types

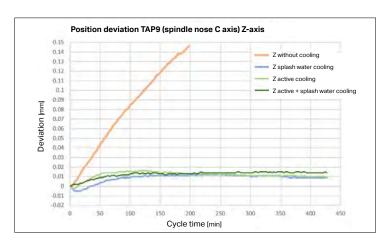
Motor temperatures



Spindle diameter ø64






Determination of change in inner diameter by means of measuring probe

Results deviation P8

Cycle time calculation

pL has specific calculation tools at its disposal. Where necessary, we can provide assistance when calculating the piece part time. Based on your information, we will prepare a detailed cycle time calculation. See the table to the right for reference values for the clapping cycle.

	unclamp	clamp *
EA-913	90 ms	100 ms
EA-915	90 ms	100 ms
EA-918	90 ms	100 ms
EA-520	120 ms	150 ms

^{*} can be eliminated with PLC optimization

PLC models

Spindle clamping is a pL LEHMANN exclusive and has great potential for savings. At www.lehmann-rotary-tables.com, you can find appropriate PLC templates.

Parameter lists*

A variety of parameter lists for various machines and three typical applications for each are available (Download).

Automatic parameter setting via CNC program. For example, available for FANUC ROBODRILL.

амур	Museentrag- beitsnoment		Kriterien (wenn Massenträgheitsmoment nicht beitar		
	J	2	Last	Dimension	
Catalog (Max.Speed)	< 0.8kgm^2	*	< 90kg	< 230mm	
Usual State of the Atlanta	< 1.2kgm^2	~	< 120kg	× 320mm	
Max.Load	<8kgm^2	*	< 800kg	< 460mm	

 $[\]mbox{^{\dag}}$ Tool for determining the permissible limit values for each rotary table; please contact us.

Pull-out torque

Permissible loads based on the rotary table mounting concerned:

Reference values	Unit		EA-913/915	EA-918	Remarks
max. permissible		clamped	1,000	1,200	
depending on bearing	Nm	unclamped	400	500	Pull-out load, spindle
EA with claw clamp	Nm				with max. tensile load on claw clamp, no notable lifting of the housing 1)
EA with base plate*	Nm		1,000 1,200		Securely bolted from below ² ; base plate is at least twice as wide as housing in the axis direction* and is bolted to machine table in optimal manner
*Base plate width	mm		268		Thickness: min. 40 mm (steel)

All data measured at face of spindle, across rotational axis

Bolt torque as specified in operating manual:

1) Lifting point on housing

plate securely bolted to housing from below through all 4 holes

Correct tightening is a prerequisite for the best possible utilization of the permissible load.

Stiffness

Expected response (elasticity) to corresponding load:

Reference values	Unit	913	915	918	520	Remarks
Torsion, gear unit	Nm/°	-	-	-	5,400	in conjunction with feed torque
Spindle, axial*	kN/mm	700	700	700	2,400	in conjunction with axial force
Spindle, deflection*	kNm/mm	32	32	37	52	in conjunction with pull-out torque

*All data measured at face of spindle 11 , relative to rotary table housing 21 ; spindle clamping active (inactive: axially approx. -20%, deflection approx. -50%)

²⁾Measurement stand support surface 1) Measuring point

64

Important technical information and explanations for the safe operation of your rotary table

1 Maximum speeds

Maximum speeds are permissible only with standard moment of inertia, otherwise the time to standstill if the emergency OFF is tripped will be too long. In this case, the axis will spin without control or the clamping will break the rotating spindle.

2 Balancing

To ensure fault-free and safe operation, it is essential that workpieces and their clamping devices do not exceed the maximum vibration values. The maximum vibration value at 2000 rpm is <0.5 mm/s by default.

The maximum permissible vibration value is 4.5 mm/s (recommended upper limit is 1.8 mm/s). By request, rotary tables including fixtures and workpieces can be checked and balanced at the factory or on site.

At pL LEHMANN, a vibration measurement is performed on all rotary tables with speeds >1,000 rpm.

3 Rotary table temperature

The motor temperature must not exceed 80 °C. Otherwise the rotary table's internal electronics may suffer permanent damage. Temperature monitoring via the control system is required. If 80 °C are to be exceeded during operation, active cooling for the rotary table is recommended. See p. 34

4 Safety information

Machining can be performed at high speeds, so corresponding safety measures must be taken and observed!

All commonly applicable standards concerning the safety of machinery (in this case for lathes) must be observed at all

In particular, the following points must be observed:

- It must be prevented that the spindle starts moving when the work area door is open (reliably limited, reduced speed, accordingly).
- Ensure that in the case of an energy failure (air, hydraulics, power) no hazardous situation can occur (safe breaking of axes, workpiece remains clamped without energy, etc.).
- Ensure that safety-relevant parameters (speed with door open, etc.) cannot be manipulated by the user (password, key switch, etc.).
- Guards (housings) must be adjusted to meet the increased demands of turning operations.

Requirements for safety cabs for spindle operation

(according to ISO 23125:2015)

max. perm. Ø	max. perm. speed	Sheet metal	Polycarbonate**
<Ø 130	3'500 rpm *	2 mm	6 mm
<Ø 260	2,700 rpm	2.5 mm	6 mm
< Ø 500	1'400 rpm	2.5 mm	8 mm

The following rule of thumb may be applied: As long as workpieces and speeds are smaller or equal to the largest possible tool at the milling spindle, the requirements for quards are met.

Caution: When using rotary tables of type EA or T (with horizontal axis), the workpiece may spin off upwards – preventive measures are required for all machines without top cover or with bellows only.

Operating parameter reference values

The 900 series rotary tables are the ideal solution for workpiece sizes of up to approx. 100 mm dia. × 100 mm long and when turning and/or grinding operations account for 30% of the overall machining process.

^{*} higher speeds at smaller Ø upon request
** Caution, subject to aging, consider reduction factors

Definition of the terms used in this catalog

5 **Drive data**

The term «drive data» always refers to rotational speed, acceleration as well as jerk limitation.

Gear (for swiveling/tilting axis TAP5(v)) 6

Gear unit loading (M_{gear max.}) ...refers to the maximum permissible mechanical torque at a spindle rotational speed of 1rpm.

She torque (M feed)

[Nm]

...refers to the available torque at a rotational speed of 1 rpm, corresponding to the maximum permissible gear load. Depending on the motor used and/or duty cycle, however, it can be correspondingly lower.

Eccentric spindle load (sl $_{\rm eccentric}$) [Nm]

The eccentric load catalog* corresponds

- to 0 Nm (standard load always centric) for EA and M rotary tables as well as dividing/indexing axes of T-type rotary tables
- to the maximum torque for T-type rotary tables, which affects the swivelling/tilting axis in the form of the intrinsic load of the dividing/indexing axis as well as that of the cubic standard load. Please refer to the respective parameter list, catalog values.

For T-type rotary tables, the eccentric load usual* is identical to the gear load with sls. For an EA rotary table, this torque is equal to the value resulting from the maximum eccentric load when using a rotoFIX Alu with a standard load. Please refer to the respective parameter list, usual values.

The eccentric load max load* corresponds to the maximum mechanical torque which can still be transmitted without any damage using the gear unit at a minimum rotational speed of approx. 10 rpm. Please refer to the respective parameter list, max load values.

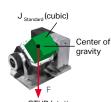
* For definitions, please refer to «Geometry / Integration» **p. 69**

Center of gravity shift without and with load. The greater the red center of gravity, the greater is the gear unit loading in the swivelling/ tilting axis. The blue arrow shows the direction in which the center of gravity moves from «without load» to «with load».

pL standard spindle load (sls = sl _{standard}) pp. 46/47 [kg] ...refers to the pL spindle load defined as standard, derived from practice, covering approximately 90% of all applications. All drive data and parameter lists are designed for the cubic pL standard load. All masses moving within this volume (workpiece including device) and clamped coaxially to the rotary axis can be moved using the standard drive data. Eccentrically arranged standard pL spindle loads may require a reduction of the drive data.

Standard moment of inertia (J $_{\rm standard}$) pp. 46/47

[kam2]

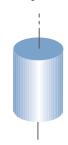

...refers to the resulting moment of inertia due to the defined pL standard load and its shape, if the load is clamped coaxially to the rotary axis. With the 500 series, the J ratio between load and motor is usually 1:1 or less (e.g. 0.5:1). With the 900 series direct drive, the ratio is max. 18:1.

Max. perm. moment of inertia (J $_{\rm max}$)

[kam2]

...corresponds to 10x the standard moment of inertia ($J_{standard}$) In most applications, this moment of inertia is not exceeded even with large workpieces. It should also be noted that the J ratio of 10:1 is NOT exceeded with any 500 series motorized model. With the 900 series direct drive, the ratio is max. 180:1. Higher J ratios can of course be shifted, but this does require the necessary adjustments (upon request).

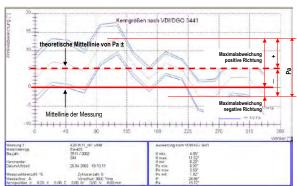
STUB (static torque of unequal burden) [Nm]



torque of unequal burden) [Nm]

EA-913

m = 21 kg J = 0.07 kgm²

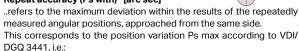

Function explanations, limit values and conditions minimize your risks

7 Rotary table accuracy

All accuracy data apply to an unloaded rotary table

Measuring process

- 5 Warm-up cycles
- 5 Measuring cycles
- 24 Measuring points (15°)
- Acceleration 500°/s²
- Heidenhain MRP8080 measuring equipment
- Unloaded rotary table as individual module room temperature approx. 22 °C


Explanation of indexing accuracy Pa ±:

Indexing accuracy (Pa ±) [arc sec]

...refers to the sum of maximum positive and negative deviations between the ACTUAL position and the TARGET position of all angular positions over 360° measured in a direction of rotation, stated as \pm value. This is equal to the position deviation Pa according to VDI/DGQ 3441, but accumulated (example: TG \pm 15" corresponds to Pa 30") and:

- without consideration of the reversal error into account
- without consideration of the radial and axial run-out error of the spindle

Repeat accuracy (Ps with) [arc sec]

without consideration of the reversal error into account

Positioning accuracy (P) [arc sec]

...refers to the maximum deviation between the TARGET position and the ACTUAL position when the direction of rotation changes. This corresponds to the positioning uncertainty P according to VDI/DGQ, i.e.:

 without consideration of the radial and axial run-out error of the spindle.

Explanation of various parameters according to VDI/DGQ 3441:

Reversal backlash (U gear) [arc sec]

...refers to the maximum mechanical backlash when the direction of rotation changes within a specific number of repeatedly measured angular positions.

- This does not correspond to a measurement parameter according to VDI/DGQ 3441
- The elasticity of all parts connected in the drive train is NOT taken into account

Reversal error (U average*) [arc sec]

...refers to the average reversal error, including elasticity, backlash and/ or overshoot of all parts connected in the drive train when the direction of rotation changes within a specific number of repeatedly measured angular positions.

This corresponds to the reversal error U average according to VDI/ DGQ 3441. The average value is calculated on the basis of all measured values.

 * For compensation and definition of backlash, please refer to «Geometry / Integration, 6.4»

Definition of the terms used in this catalog

8 Speed

Duty cycle (ED)

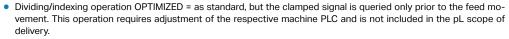
...refers to the duration of the movement per unit of time according to the DIN/VDE 0530 Standard. The axis is designed for an operation of ED 40% at a cycle duration of 10 min. To protect the axis from overload, max. 10 minutes of continuous operation are permitted at the following speeds: 913: 1,600 rpm, 915: 1,100 rpm, 918: 800 rpm. If these values are exceeded, the signal 'Axis released' is reset, causing the spindle to stop. Please contact us if longer continuous cycles at speeds higher than those above are required.

DIN / VDE 0530 S3, ED 40%

Rotational spindle speed (n soi)

...always refers to the maximum possible rotational speed of the spindle

- while complying with the duty cycle ED
- with the corresponding motor
- with the pL standard spindle load (cubic)


Cycle time 90° / 180° (t $_{90°}$ / t $_{180°}$)

[sec]

[rpm]

...refers to the time required for the entire dividing / indexing operation for a 90°/180° movement

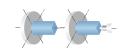
9 Spindle bearing

Axial force (F ...

[N]

..refers to the maximum permissible axial load on the spindle. It includes the workpiece, devices, machining forces and other forces resulting from the rotational and tilting movement.

Pull-out torque (M,ii) [Nm]


..refers to the maximum permissible tiling load on the spindle, measured from the spindle face. It includes the workpiece, devices, machining forces and torques resulting from the rotational and tilting movement.

Transport load (sl max)

t load (sl _{max})

...refers to the total, maximum permissible load which is installed starting from the spindle nose and performs a rotational movement together with the spindle (device and workpiece). This load does not correspond to the pL standard spindle load.

Radial and axial run-out (ro $_{\rm con/ax}$)

[mm]

...refers to the maximum deviation occurring in the axial (axial run--out) or radial (radial run--out) direction when measured over 360°. Measured in each case on the maximum possible diameter of the spindle nose.

10 Clamping

Clamping torque (M clamp)

[NIm]

...refers to the maximum permissible torque load on the spindle nose during active clamping (5 bar air pressure). The pL clamping is extremely rigid. Depending on the load, there is also a setting behavior in addition to a usual elasticity. We distinguish between three phases when progressing from zero load to maximum load. The setting behavior results in an irreversible torsion after unloading as follows:

- Phase 1 «normal» (approx. 1/3 to 1/2 of the permissible clamping torque) up to approx. 0.0015 mm*
- Phase 2 «increased» (approx. 2/3 of the permissible clamping torque) up to approx. 0.002 0.004 mm*
- Phase 3 «maximum» (up to 100% of the permissible clamping torque) up to approx. 0.008 mm*

In practice, in order to be prepared for adverse factors such as vibration, dulled tools, etc., a maximum of 50% or the spindle clamping torque should be applied during the calculation phase of the application

* For unilateral load, in relation to the spindle outside Ø of the respective rotary table. The indexing and repeat accuracy is not impaired by another positioning.

Function explanations, limit values and conditions minimize your risks

11 Leaktightness (acc. to EN 60529)

...refers to the leaktightness in terms of protection against accidental contact, protection against the ingress of foreign matter and protection against the ingress of water:

IP 65: Protection against accidental contact, no ingress of dust, protection against the ingress of water jets

 $\textbf{IP 66:} \ \mathsf{Same} \ \mathsf{protection} \ \mathsf{as} \ \mathsf{IP 65}, \ \mathsf{but} \ \mathsf{protection} \ \mathsf{against} \ \mathsf{the} \ \mathsf{ingress} \ \mathsf{of} \ \mathsf{powerful} \ \mathsf{water} \ \mathsf{jets}$

IP 67 (standard at pL): Same protection as IP 66, but protection against the ingress of water from temporary immersion

IP 68 (optional at pL): Same protection as IP 67, but protection against the ingress of water from permanent immersion

12 Geometry and integration

All accuracy data apply to an unloaded rotary table

Tilting drift (sd 200)

...refers to the deviation of the perpendicularity between the dividing/indexing axis and the swivelling/tilting axis over a specific tilting range. pL always measures three points: -90° (horizontal), -45° and 0° (vertical), always related to the position of the dividing/indexing axis and on a radius starting from the center of the swivelling/tilting axis of 200 mm.

Offset values (offset)

...refer to the deviation from any theoretical NOMINAL values in order to ensure easier alignment of the rotary table on the machine and faster commissioning.

Pitch error (pe)

...refers to the effective NOMINAL-ACTUAL deviation over a specific rotation angle ("pitch error") for axis error compensation on the CNC machine. For rotary tables with gear unit, this occurs typically with the movement of eccentrically arranged loads such as clamping yokes, swivelling/tilting axes etc.

Backlash (bl)

...refers to the mechanical and electronic reversal error* (gear unit, angular position measuring system, positioning control...) for the loose backlash compensation on the CNC machine.

* For definition see «Rotary table accuracy» p. 67

Parameter lists

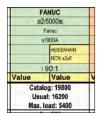
To minimize commissioning time and make maximum use of the pL rotary table, you can find parameter lists for various controls at www.lehmann-rotary-tables.com. In the case of load-relevant parameters, we distinguish between...

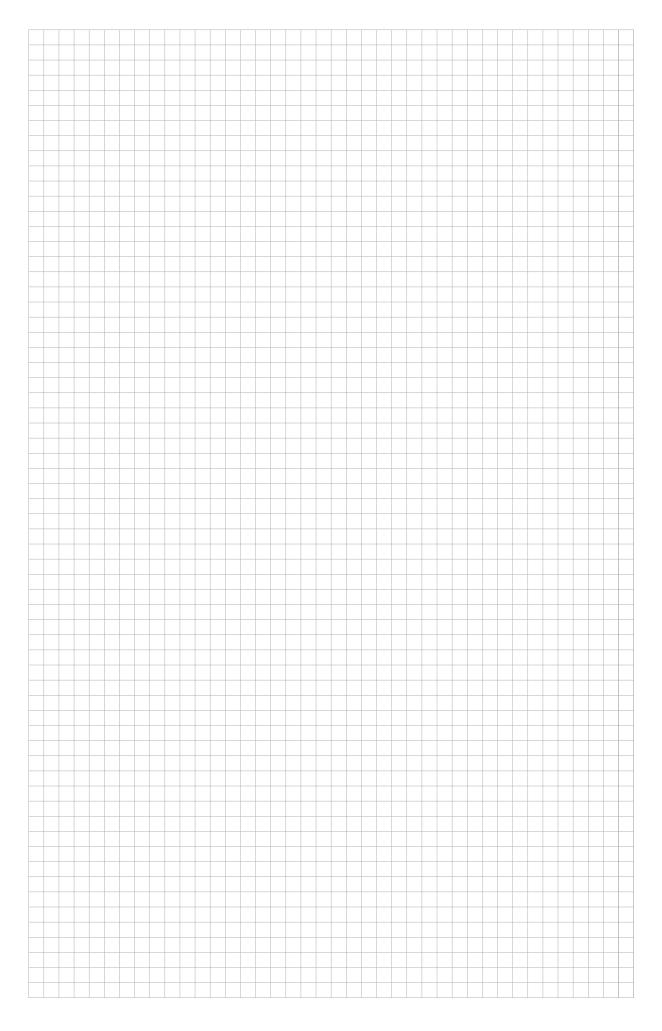
usual

...refers to the practice-oriented drive values for pL standard spindle loads, which should usually be set (pL recommendation) in order to still provide certain reserves to integrate deviations occurring in practice and to allow an easier control comparison. Normally, no warm-up is required here.

catalog

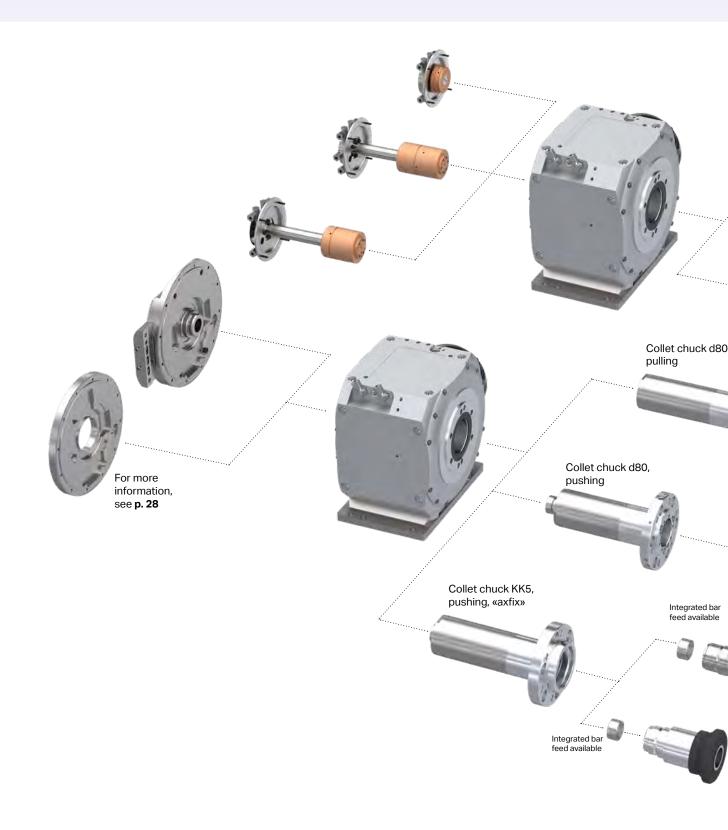
...refers to the maximum achievable catalog drive values for pL standard spindle loads, for which more demanding requirements are imposed both on the commissioning engineer and on the material in order to achieve these values. Depending on the respective application, they must be reduced (empirically). A warm-up cycle is frequently recommended

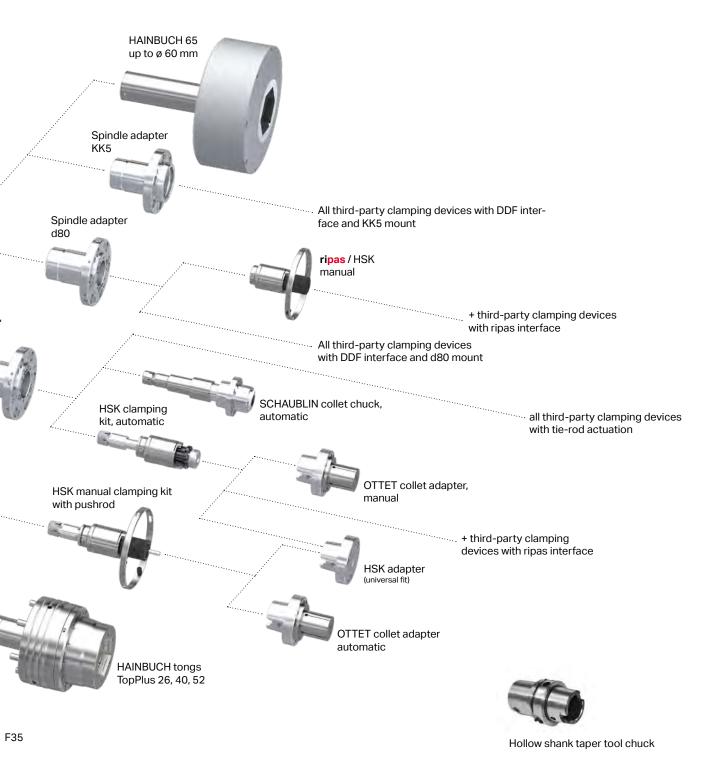

max load


...refers to the maximum achievable drive values for J max. and eccentric loading.

offset 1: [mm] 0.013

pitch-error: [°] 0.005




Workpiece clamping systems

		——————————————————————————————————————	72
	C MAIN	Flexible spindle accessories	74
		Spindle adapter	76
w	\ 0	Clamping cartridges, release cylinders	77
(i)		Palletizing system ripas	78
		HSK / ripas clamping systems, morse taper inserts	79
		AM-LOCK	80
	<u> </u>	Manual 3-jaw chucks / face plates	81
		Collet clamping Type B, SCHAUBLIN	82
		Collet clamping Type W, SCHAUBLIN	83
		Collet clamping Type F and ER, SCHAUBLIN	84
	(Collet clamping OTTET	85
<u> </u>		Collet clamping HAINBUCH	86
		TANDEM power clamping blocks SCHUNK	90
<u></u>		VERO-S zero-point clamping system SCHUNK	92
	<u> </u>	Zero-point clamping system HWR	93
		gredoc + gre4doc clamping devices GRESSEL	94
		Zero-point clamping system LANG	96
		Palletizing systems EROWA	97
-		Palletizing systems System 3R	98
		Palletizing systems PAROTEC	99
-		Centric clamping unit Evard	100
		Clamping systems TRIAG	101
		Other clamping systems	103
Ann.	3 3	Clamping systems TG Colin/ YERLY	104
		SwissChuck / HOFER chuck	105
	(Clamping technology hemo / PiranhaClamp	106
		Palletizing systems STARK / AMF	107
	Talada (G	Zero-point clamping plates	108
6		Face driver RÖHM	110
		Revolving centers RÖHM	111
-		transferBox ROTOMATION	112

To ensure production reliability: powerless workpiece clamping, keeping the workpiece in place even in the event of pressure loss

Plates, force clamp and jaw chucks, collet chucks

Centric clamping unit

EVARD

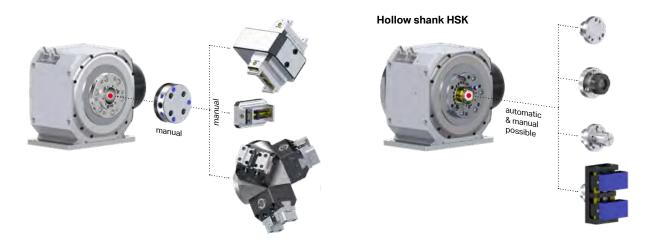
TRIAG

Possible systems

- SCHUNK
- LANG
- Gressel
- Piranha Clamp

Zero point clamping systems

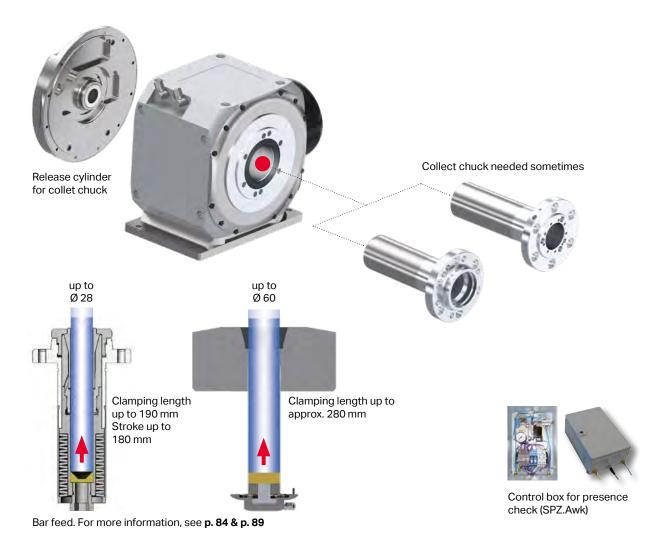
Possible systems


- pL LEHMANN
- (ripas & CAPTO)
- Erowa
- System 3R
- Parotec
 Paombolo
- Roemheld
 AMF
- SCHUNK
- LANG GRESSEL
- ...

Centric clamping unit for workpiece handling, mounted zero point clamping system for quick vise replacement

Combination possibilities

A multitude of accessories adaptable thanks to standardized interface



			L from spindle
Item no.	Designation	Dimensions	[mm]
SPI.91x-d80	Spindle adapter	Outer diameter 80 mm	20
SPI.91x-KK5	Spindle adapter bigBore with KK5		32.3

Clamped even without power or pressure: The safe solution for workpiece clamping when operating at high speeds

Item No.	Designation	Dimension	can be retrofitted
SPZ.91x-s3-d80	Collet chuck d80, incl. release cylinder	pushing, F: 2 kN (6 bar), stroke: 3.0 mm	
SPZ.91x-s9-d80	Collet chuck d80, incl. release cylinder	pushing, F: 2 kN (6 bar), stroke: 9.0 mm	
SPZ.91x-s3-KK5	Collet chuck KK5, incl. release cylinder	pushing, F: 10.5kN (6 bar), stroke: 3.0 mm. effective passage increased	
SPZ.91x-s3-d125	Collet chuck d125, incl. release cylinder	pushing, F: 10.5kN (6 bar), stroke: 3.0 mm. effective passage increased	
SPZ.91x-z3-d80	Collet chuck d80, incl. release cylinder	pulling, F: 10kN (6 bar), stroke: 3.0 mm, M24x1.5	
SPZ.91x-z9-d80	Collet chuck d80, incl. release cylinder	pulling, F: 10kN (6 bar), stroke: 9.0mm, M24x1.5	
SPZ.91x-Stange	Bar feed ø28, stroke 180 mm	fits SPZ.91x-s3d30	•

collet chucks for EA-918 require option SPZ.918-ada Clamping force depending on clamping device (angle, transmission ratio, etc.) F=draw-in force

Options for all sizes

SPZ.Awk-Vor	Preparation for presence check only possible for automatic clamping (only with adapter from pL)
SPZ.Awk	Control box for presence check

cannot be combined with bar feed

newChuck: ideal table chuck for machining of the 5th or 6th side, for example, with integrated rings

The main advantages of ripas

- Very space-saving, as integrated completely in the spindle
- Easy to retrofit
- Very torsionally rigid
- High precision
- Standard interface proven in thousands of applications
- When required, standard adapter can also be used (no rough positioning possible)

The principle

The basis is the standardized HSK clamping with conventional clamping sets. However, the carrier cams are precisely ground and can deflect axially. The counterpart (HSK adapter) has a precise groove as well as a positioning bore for the guide pin.

The function

ripas has 3 functions:

- A Anti-twist protection
- B Rough positioning
- Precision positioning

Process

During changes (manually or automatic), the guide pin (A) ensures proper orientation while providing rough positioning at the same time (5).

Shortly before the face is reached, the inner precision cams perform the precision positioning ①.

ltem no.	Designation	Weight Rgl	Manual (MAPAL)	Pneumatic	Required clamping cylinder
RIP.91x-63m	ripas clamping, manual, A63		•		
RIP.91x-63p	ripas clamping, pneumatic, A63			•	SPZ.91x-z9-d80
RIP.91x-63m-OT	ripas clamping adapter for collet chuck, A63, manual (Ottet)		•		
RIP.63ada	ripas adapter, A63				RIP.91x-63m or RIP.91x-63p
RIP.63-KD-1	Alignment pin, A63				

Above dimensions

Above dimensions apply with ripas adapter inserted. Without adapter, the clamping kit protrudes approx. 10.5 mm.

HSK = Hollow shank taper to DIN 69063-1 (spindle) or DIN 69893 (adapters)

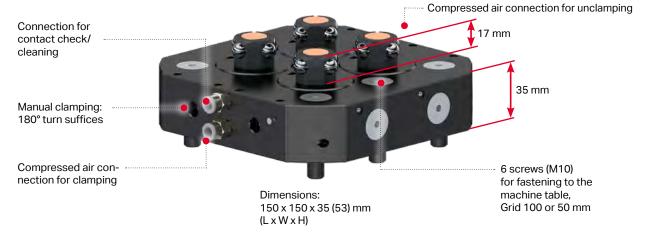
Technical data for ripas / HSK		HSK-A6	3 manual	HSK-A63	automatic	
	Unit	Standard	ripasGrip (option)	Standard	ripasGrip (option)	
Tensile force	kN		-	10 ¹⁾		
Resulting insertion force on adapter, max.	kN	30 at 2	20 Nm ²⁾	30		
Perm. pull-out torque (before losing face contact)	kN	appro	ox. 600	approx. 600		
Transport load	kg	appr	ox. 60	approx. 60		
Perm. torque 3) (slip 4) max. ± 0.003°) A	Nm	-	approx. +50%	approx. 150	approx. 300	
Perm. torque 3) (slip 4) max. ± 0.01°) B	Nm	-	approx. +50%	approx. 250	approx. 450	
Repeat accuracy, XYZ	mm	< 0	.005	< 0.005		
Repeat accuracy, angular	± arc sec		8	4		

¹⁾ with SPZ.91x-z9-d80

 $^{^{\}mbox{\tiny 3]}}$ Values apply under static conditions, without any vibrations, with no load, dry, free of grease, clean

²⁾ Radial screw

⁴⁾ returns to original position after unclamping/clamping


QUATTRO for light machining

4x AM-LOCK-QUATTRO chucks for higher machining forces

QUATTRO chuck

UNO chuck

Dimensions: 100 x 100 mm 35 mm high

6 benefits (applies to QUATTRO and UNO)

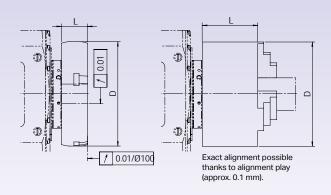
- Only 35 mm high
- Manual and pneumatic in one
- Easy to clean
- With pulse voltage
- Easy mounting
- Minimal maintenance

Technical data

		UNO	QUATTRO
Repeat accuracy X/Y/Z		approx. ±	0.005 mm
Retention force, clamped	Manual	approx. 6 kN	approx. 24 kN
Retention force, clamped	pneumatic at 6 bar	approx. 10 kN	approx. 40 kN

Item no.

Item no.	Designation	Dimensions	Weight [kg]	Max. speed [rpm]
AML.SPF-U	UNO chuck	Ø50x34 mm, 1 pin	1.18	
AML.SPF-Q-2	QUATTRO chuck	150x150x34 mm, 4 pins	4.70	



for more information, see AM-LOCK

Clamped quickly and easily

Quickly converted for small series and express work

Further information about jaw chucks at: www.niederhauser.ch Request installation and operating instructions directly from manufacturer

Faceplates (axial discs)

	Item no.	Designation	Diameter D [mm]	Thickness [mm]	Passage [mm]	L from spindle [mm]	Weight [kg]	max. speed [rpm]	Moment of inertia J [kgm²]
91x	TPL.91x-250	Faceplate, 8 T-slots 14 mm	45	45	42.1	17	*	0.14	
	TPL.5xx-GEN	Increased accuracy = 1/2 tolerance va	alues						
	TPL.mon	Faceplate assembled and measured							

Scroll chucks, steel (manual)

 $incl.\ matching\ adapter\ flange,\ 1\ set\ each\ of\ hard\ boring\ and\ turning\ jaws\ as\ well\ as\ clamping\ wrench\ and\ fastening\ screw$

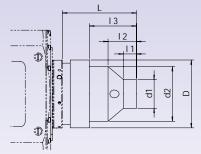
	Item no.	Designation	Diameter D [mm]	Thickness [mm]	Passage [mm]	L from spindle adapter [mm]	Weight [kg]	max. speed [rpm]	Moment of inertia J [kgm²]	Required spindle adapter	Niederhau- ser item no.
	BFU.510-125ps	Scroll chuck	125		35	74	7	5'500	0.01	SPI.91x-d80	510-125ps
89	BFU.510-160ps	Scroll chuck	160		42	82	13	4'600	0.04	SPI.91x-d80	510-160ps
	BFU.510-200ps	Scroll chuck	200		44	92	22	4'000	0.07	SPI.91x-d80	510-200ps
	BFU.5xx-GEN	Increased accuracy = 1/2	ncreased accuracy = 1/2 tolerance values								

- Limited clamping
- force Limited range of jaws (no claw and
- segment jaws) Cheaper than wedge bar chuck

Wedge bar chuck SMW type HG-F

(manual, modular helical gear jaw system)

incl. matching adapter flange, 1 set of hard, reversible ground stepped jaws in the chuck as well as clamping wrench and fastening screw


			Diameter D [mm]	nickness [m]	Passage [mm]	from spindle dapter [mm]	Weight [kg]	max. speed [rpm]	Moment of inertia	Required spindle	Niederhau-
	Item no.	Designation	ے ۵ ت	声트	ے تھ	a L	≥₹	ΕË	J [kgm²]	adapter	ser item no.
d80	BFU.510-160ks	Wedge bar chuck	160		42	81	11	5'500	0.04	SPI.91x-d80	510-160ks
쁑	BFU.510-200ks	Wedge bar chuck	200		42	102.5	22	4'800	0.11	SPI.91x-d80	510-200ks
	BFU.5xx-GEN	ncreased accuracy = ½ tolerance values									

- Higher clamping force
- Faster conversions (with quick jaw change system)
- More jaw accessories More expensive than
- scroll chuck

 $[\]star$ = TPL without assembly permits full speed, assembly to be performed by client

Mounting chuck, manual Radial run-out with collet approx. 15µ (Schaublin)

Mounting chuck, automatic Type B $\operatorname{\sf axfix}$

Further information: www.niederhauser.ch

Request installation and operating instructions directly from manufacturer

	pL LEHMANN Item no.	Designation	System	axfix	Manual	Power-actuated	L [mm]	l 1 [mm]	12 [mm]	13 [mm]	D [mm]	d1 [mm]	d2 [mm]	d3 [mm]	Weight [kg]	ax.	For required options see p. 76/77	Niederhauser item no. incl. adapter flange
98p	ZSP.510-B32Aka	Mounting chuck	B32	•		•	135	25	54.5	90	130	55	105				SPZ.91x-z3-d80	510-B32KA
KK5	ZSP.520-B32Am	Mounting chuck	B32		•		149	59	75	-	130	53	62	88			SPI.91x-KK5	520-B32
호	ZSP.520-B45Am	Mounting chuck	B45		•		180	76	-	-	160	65	96	-			SPI.91x-KK5	520-B45

Clamping capacity and passage

System	Clamping capacity [mm]	Collet passage [mm]
B32	0.332	28
B45	145	36

Mounting chuck

Collet holder B32

with standard B32 collet

E G

Manual flange-mounted chuck supplied loose, power-operated, set up and aligned by pL LEHMANN (if ordered together with a rotary table)

Mounting chuck, manual

Collet adapter, installed by pL LEHMANN (if ordered together with a rotary table)

Further information: www.niederhauser.ch

Request installation and operating instructions directly from manufacturer

	L LEHMANN em no.	Designation	System	Manual	Power-actuated	L [mm]	L1 [mm]	L2 [mm]	D [mm]	d1 [mm]	d2 [mm]	d3 [mm]	Weight [kg]	max. speed [rpm]	For required options see p. 76/77	Niederhauser item no. incl. adapter flange
	SP.520-W20Am	Mounting chuck	W20	•		127	36	53	130	40	54	88			SPI.91x-KK5	520-W20
\$ Z	SP.520-W25Am	Mounting chuck	W25	•		151	60	76	130	48	59	88			SPI.91x-KK5	520-W25
	SP.520-W31Am	Mounting chuck	W31.75	•		138	48	64	130	53	62	88			SPI.91x-KK5	520-W31.75
	SP.91x-W20k	with HSK application	W20		•	39	15		130	47.5					SPZ.91x-z3-d80	
g Z	SP.91x-W25k	with HSK application	W25		•	39	15		130	47.5					SPZ.91x-z3-d80	
	SP.91x-W31k	with HSK application	W31.75		•	39	15		130	47.5					SPZ.91x-z3-d80	

Collet adapters (Type W) \blacksquare LEHMANN $^{\circ}$

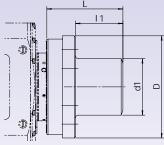
Collet holder W25

Rugged and slim design for better accessibility

with standard W25 collet

Radial run-out < 0.005 mm

ki-mech ambh


www.ki-mech.ch
Request installation and
operating instructions
directly from manufacturer

Clamping capacity and (effective) passage

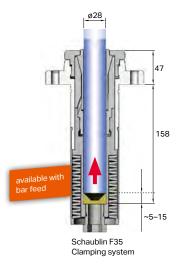
System	Clamping capacity [mm]	Collet passage [mm]	Standard effective passage [mm]
W20	0.323	14.5	14
W25	0.329	21	17
W31.75 (5C)	0.531	27	17

Manual flange-mounted chuck supplied loose, power-operated, set up and aligned by pL LEHMANN (if ordered together with a rotary table)

11 \otimes 등 9 Mounting chuck, manual Type F

Mounting chuck, hydraulic Type ${\sf F}$

Further information: www.niederhauser.ch

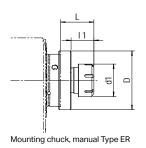

Request installation and operating instructions directly from manufacturer

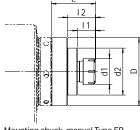
Collet clamping Type F

Achievable accuracy with collet 30–40 $\!\mu$

	pL LEHMANN Item no.	Designation	Manual	Pneumatic	Hydraulic	System	Clam- ping capacity [mm]	L [mm]	l 1 [mm]	D [mm]	d 1 [mm]	Weight [kg]	max. speed [rpm]	For required options see p. 76/77	Niederhauser item no. incl. adapter flange
d80	ZSP.510-F35Am	Mounting chuck	•			F35	130	129	40	160	90			SPI.91x-d80	510-F35
쁑	ZSP.510-F35Ak	Mount. chuck, power-actuated			•	F35	130	114.4	73.4	112	85			SPZ.91x-z9-d80	510-F35K
KK5	ZSP.520-F48Am	Mounting chuck	•			F48	142	145	40	160	90			SPI.91x-KK5	520-F48
	ZSP.91x-F35k*	Collet adapter, power-actuated		•		F35	130	9		80				SPZ.91x-s9d30	

^{*} available with bar feed, see p. 77





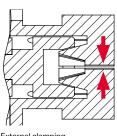
Collect clamping Type ER

	pL LEHMANN Item no.	Designation	Manual	System	Clamping capacity [mm]	L [mm]	l 1 [mm]	12 [mm]	D [mm]	d1 [mm]	d2 [mm]	Weight [kg]	max. speed [rpm]	For required options see p. 76/77	Niederhauser item no., incl. adapter flange
	ZSP.520-E25Am	Mounting chuck	•	ER-25	0.517	80	30	50	130	42	90				520-ER25
(K5	ZSP.520-E32Am	Mounting chuck	•	ER-32	122	88	38	50	130	50	90			SPI.91x-KK5	520-ER32
_	ZSP.520-E40Am	Mounting chuck	•	ER-40	230	90	40	50	130	63	90				520-ER40

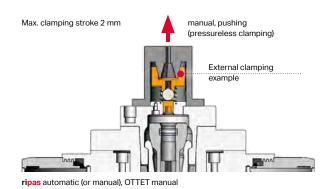
Mounting chuck, manual Type ER

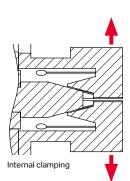
Manual

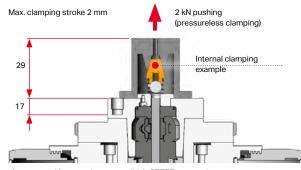
□ LEHMANN®


Clamping tools installed and aligned by pL LEHMANN (if ordered together with a rotary table)

OTTET collet clamping


pL LEHMANN		Max. speed	
Item no.	Designation	[rpm]	Required palletizing system ripas and clamping cylinder*
ZSP.91x-OTk	With HSK adapter, power-actuated		RIP.91x-63m-OT and SPZ.91x-s3-d80 required
ZSP.91x-OTm	With HSK adapter, manual		RIP.91x-63p and SPZ.91x-z9-d80 required


^{*} see p. 78/79


The collet chuck with clamping piston inside is suitable for internal and external clamping, pneumatically actuated.

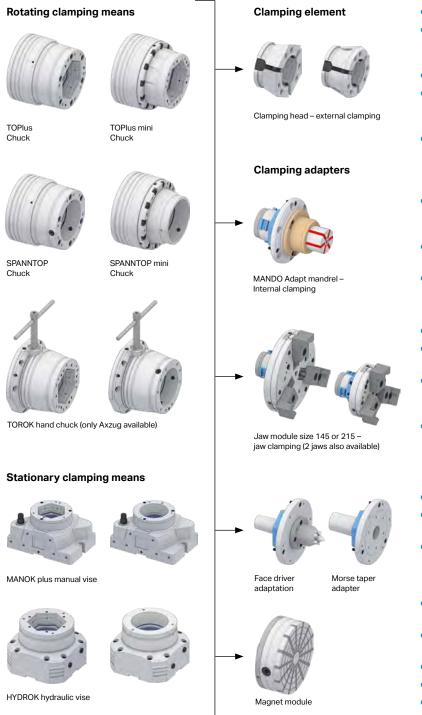
External clamping

ripas manual (automatic not possible), OTTET automatic

Clamping means installed and aligned by pL LEHMANN (if ordered together with a rotary table)

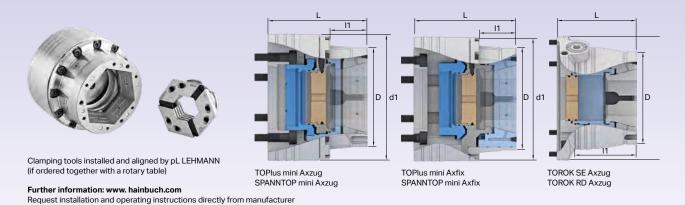
Further information: www. hainbuch.com

Request installation and operating instructions directly from manufacturer


The clamping device serves as the starting point on the Lehmann CNC rotary table and can be be set up easily for your workpieces through use of a wide variety of clamping elements and adapters. Regardless of whether the clamping requires a round or profiled contour, whether unmachined or finish-machined parts are involved, whether soft or hard machining, or external or internal clamping – the HAINBUCH System offers a multitude of clamping options – without major expense or effort for setup.

Advantages of Axzug

- More accurate
- More stable
- Cheaper
- Smaller


Advantages of Axfix

- Fewer clamping marks
- No loss of clamping length Defined axial positioning
- (e.g., for work with counter spindle)
- Hainbuch system not possible

- All-round clamping
- 3 different versions: for tubular material, fine machining or boring out yourself
- Multitude of profile clamping options
- Coolant-resistant rubber-metal connection, keeps swarf out of the clamping means
- Clamping capacity SE ø 3 65 mm Clamping capacity RD ø 3 – 65 mm
- Fast conversion from external to internal clamping without alignment thanks to CENTREX interface
- Radial run-out < 0.005 mm between chuck taper and mandrel taper
- Clamping capacity ø 8 100 mm
- axfixe 3-jaw clamping
- Can be used in rotating (moving) and stationary applications
- Convert from chuck head to mandrel or jaw clamping in less than 2 minutes
- Jaw stroke with size 65: 2.2 mm
- Enormous flexibility
- Self-centering of adapter in the chuck ≤ 0.003 mm
- Extremely fast conversion without disassembling the chuck [1 min.]
- End face axial clamping via neodymium magnet
- High axial run-out changeover accuracy
- High retention force of 140 N/cm²
- Assembly in 30 sec. without aligning
- Low maintenance, since resistant to contamination
- 1 size Ø200 available

HAINBUCH chucks TOPlus mini | TOROK SE

	pL LEHMANN Item no.	Designation	Manual	Hydraulic	Size	Clamping capacity [mm]	L [mm]	l 1 [mm]	D [mm]	d 1 [mm]	Weight [kg]	Max. speed [rpm]	Required accessories	Compatible with modular system	HAINBUCH item no. incl. adapter flange
	HAI.510-tp-axz	TOPlus mini Axzug		•	52	352	103.5	42	119 f7	150	10.9	7000	SPZ.91x-s9-d80	•	10001282
8	HAI.510-tp-axf	TOPlus mini Axfix		•	52	352	104.5	44	119 f7	150	10.6	7000	SPZ.91x-s9-d80	•	10001286
	HAI.510-tp-to	TOROK SE Axzug	•		52	352	137	92	125 f7	174	14.6	7000	SPI.91x-d80	•	10001300

TOPlus mini

TOPlus mini

- 25 % higher retention force than SPANNTOP
- Outstanding rigidity thanks to large contact surface of the clamping segments
- Insensitive to dirt thanks to clamping head geometry
- Lower centrifugal force losses compared to jaw chucks
- Optimal lubrication thanks to lubrication grooves in the clamping element holder
- Workpiece stabilized through axial pulling against workpiece stop
- Radial run-out < 0.015 mm
- Minimal interference contour and easy changing of the clamping heads

HAINBUCH chucks SPANNTOP mini | TOROK RD

	pL LEHMANN Item no.	Designation	Manual	Hydraulic	Size	Clam- ping capacity [mm]	L [mm]	l 1 [mm]	D [mm]	d 1 [mm]	Weight [kg]	max. speed [rpm]	Required accessories	Compatible with modular system	HAINBUCH Item no. incl. adapter flange
	HAI.510-st-axz	SPANNTOP mini Axzug		•	52	352	103.5	45	90 f7	150	9.0	7000	SPZ.91x-s9-d80	•	10001290
88	HAI.510-st-axf	SPANNTOP mini Axfix		•	52	352	104.5	44	98 f7	150	9.2	7000	SPZ.91x-s9-d80	•	10001294
	HAI.510-st-to	TOROK RD Axzug	•		52	352	137	92	125 f7	174	14.7	7000	SPI.91x-d80	•	10001297

SPANNTOP mini

- Classical benefits of all HAINBUCH power chucks, e.g. high retention force, allaround clamping with high accuracy and exceptional ease of setup
- Lower centrifugal force losses compared to jaw chucks
- Workpiece stabilized through axial pulling against workpiece stop
- Radial run-out < 0.01 mm
- Minimal interference contour and easy changing of the clamping heads

Adapter flange required in order to use Hainbuch system.

Clamping tools installed and aligned by pL LEHMANN (if ordered together with a rotary table)

MANDO T212 Axzug MANDO T812 Axfix

Further information: www. hainbuch.com

Request installation and operating instructions directly from manufacturer

HAINBUCH clamping mandrels MANDO

	pL LEHMANN Item no.	Designation	Hydraulic	Size	Clamping capacity [mm]	L [mm]	l 1 [mm]	D [mm]	d 1 [mm]	Weight [kg]	max. speed [rpm]		HAINBUCH Item no. incl. adapter flange
	HAI.510-ma-axz1	MANDO T212 Axzug	•	S	1621	112.5	47.5	70	141	7.50	7000	SPZ.91x-s9-d80	10001310
	HAI.510-ma-axf1	MANDO T812 Axfix	•	S	1621	117.5	49.5	70	141	7.80	7000	SPZ.91x-s9-d80	10001318
8	HAI.510-ma-axz2	MANDO T211 Axzug	•	0	2028	115.5	40.0	75	141	7.20	7000	SPZ.91x-s9-d80	10001303
Ĭ	HAI.510-ma-axz3	MANDO T212 Axzug	•	0	2028	123.5	58.5	90	141	8.00	7000	SPZ.91x-s9-d80	10001311
	HAI.510-ma-axf2	MANDO T812 Axfix	•	0	2028	129.5	60.5	90	141	8.40	7000	SPZ.91x-s9-d80	10001319

MANDO T211

For components with Ø20-200 mm through holes (due to tension bolts)

MANDO

Typical HAINBUCH features such as ease of setup, parallel clamping, optimal force transmission, high rigidity and retention force as well as low wear

D d1

- Workpiece stabilized through axial pulling against workpiece stop
- Radial run-out < 0.01 mm, version T812 < 0.025 mm (with +0.003 mm adaptation)
- Large adaptation range through use of vulcanized clamping elements
- Prepared for air system check at workpiece stop

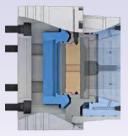
MANDO T212 MANDO T812

88

For components with blind holes from Ø8–200 mm

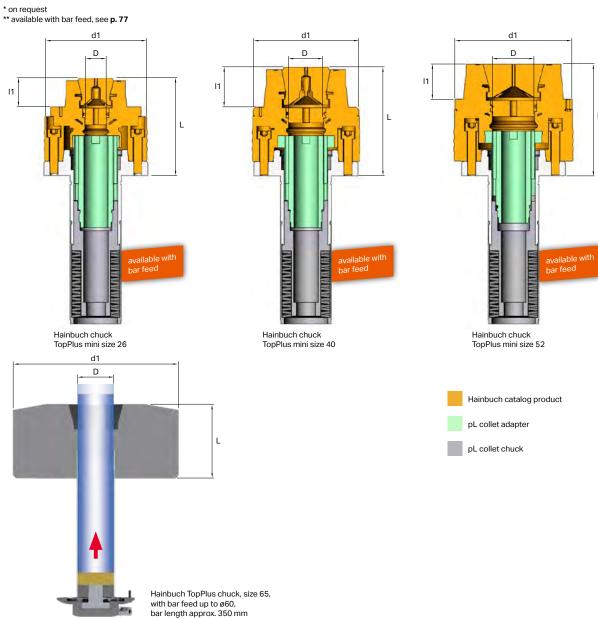
SPANNTOP mini Axzug size 52 on TAP5

MANDO T211 size 0 on TAP9



TOROK SE size 52 on TAP9

TOPlus mini Axfix size 52 on EA-915



TOPlus mini Axfix SPANNTOP mini Axfix

HAINBUCH chuck TopPlus

	pL LEHMANN Item no.	Designation	Pneumatic	Size	Clamping capacity [mm]	L [mm]	I 1 [mm]	D [mm]	d 1 [mm]	Weight [kg]	max. speed [rpm]	Required option	HAINBUCH Item no. incl. adapter flange
	HAI.91x-tp26-axf**	TopPlus mini size 26	•	26	426	125	33	27	128	6.90	10,000	SPZ.91x-s9d30	10018251
	HAI.91x-tp40-axf**	TopPlus mini size 40	•	40	440	136	47	44	135	9.10	7,000	SPZ.91x-s9d30	10018252
Ī	HAI.91x-tp52-axf**	TopPlus mini size 52	•	52	452	140	44	53	150	15.60	7,000	SPZ.91x-s9d30	10018708
	HAI.91x-tp65-axf*	TopPlus size 65	•	65	465	120		61	275			DDF.91x-04-HAI	

Clamping devices assembled by pL LEHMANN, final adjustment by customer (if ordered together with a rotary table)

Further information at: www.schunk.com Request installation and operating instructions directly from manufacturer

Adapter flanges

	pL LEHMANN Item no.		Fits power clamping blocks	L from spindle adapter [mm]	Weight [kg]	SCHUNK Item No.
	SCH.5xx-Ada64	0	TANDEM3 64	15	0.7	1504986
0	SCH.5xx-Ada100 SCH.5xx-Ada140	2	TANDEM3 100	20	2.4	1504987
쁑	SCH.5xx-Ada140	4	TANDEM3 140	20	3.9	1536156
	SCH.510-Ada160	3	TANDEM3 160	15	4.8	1504112

ROTA-S plus 2.0 adapter flanges

	pL LEHMANN Item no.	matching the manual chuck	L from spindle [mm]	- 3	SCHUNK Item No.
d80	SCH.510-ROTA160	ROTA-S plus 160	20	4.5	1546433

KSPZ plus 250 on EA-91x

SCHUNK clamping unit on SCHUNK VERO-S (p. 92)

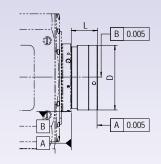
Clamping devices assembled by pL LEHMANN, final adjustment by customer (if ordered together with a rotary table)

Further information at: www.schunk.com Request installation and operating instructions directly from manufacturer

Power clamping blocks

pL LEHMANN		Size	L from spindle (with adapter flange, without jaws) [mm]	Hydraulic	Pneumatic	Centered	Fixed jaw	Jaw stroke [mm]	Clamping force [kN] *	Max. pressure (bar)	Max. range with standard jaws ** [mm]	Weight (with adapter flange) [kg]	Max. speed ****[rpm]	Required adapter flange	Additionally required pL LEHMANN rotary union ***	SCHUNK catalog
Item no.	Designation	[mm]			₫		证					-				reference
SCH.KRH100	KRH3 100-Z	100 x 100	94.2	•		•		2	18	60	-	6.9	100	2	DDF.91x-04-d80	1518364
SCH.KRH100LH	KRH3-LH 100-Z	100 x 100	94.2	•		•		6	16	120	-	7.0	100	2	DDF.91x-04-d80	1518368
SCH.KRH160	KRH3 160-Z	160 x 160	102.2	•		•		3	45	60	-	19.2	100	3	DDF.91x-04-d80	1518382
SCH.KRH160LH	KRH3-LH 160-Z	160 x 160	102.2	•		•		8	40	120	-	19.2	100	3	DDF.91x-04-d80	1518386
SCH.KRP100	KRP3 100-Z	100 x 100	89.2		•	•		2	18	9	-	6.4	100	2	DDF.91x-04-d80	1475575
SCH.KRP100LH	KRP3-LH 100-Z	100 x 100	89.2		•	•		6	8	9	-	6.4	100	2	DDF.91x-04-d80	1475586
SCH.KRP160	KRP3 160-Z	160 x 160	97.2		•	•		3	45	9	-	15.8	100	3	DDF.91x-04-d80	1499466
SCH.KRP160LH	KRP3-LH 160-Z	160 x 160	97.2		•	•		8	20	9	-	15.8	100	3	DDF.91x-04-d80	1499475
SCH.KSP64	KSP3 64-Z	64 x 64	65.7		•	•		2	4.5	9	40	1.9	100	0	DDF.91x-04-d80	1409255
SCH.KSP64F	KSP3-F 64-Z	64 x 64	65.7		•		•	4	4.5	9	40	1.9	100	0	DDF.91x-04-d80	1409335
SCH.KSP100	KSP3 100-Z	100 x 100	89.2		•	•		2	18	9	70	6.2	100	2	DDF.91x-04-d80	1409263
SCH.KSP100LH	KSP3-LH 100-Z	100 x 100	89.2		•	•		6	8	9	70	6.2	100	2	DDF.91x-04-d80	1409301
SCH.KSP100F	KSP3-F 100-Z	100 x 100	89.2		•		•	4	18	9	70	6.2	100	2	DDF.91x-04-d80	1409343
SCH.KSP140	KSP3 140-Z	140 x 140	92.7		•	•		3	30	9	90	11	100	4	DDF.91x-04-d80	1409268
SCH.KSP140LH	KSP3-LH 140-Z	140 x 140	92.7		•	•		7	15	9	90	11.1	100	4	DDF.91x-04-d80	1409308
SCH.KSP140F	KSP3-F 140-Z	140 x 140	92.7		•		•	6	30	9	90	11.1	100	4	DDF.91x-04-d80	1409347
SCH.KSP160	KSP3 160-Z	160 x 160	97.2		•	•		3	45	9	120	15.80	100	3	DDF.91x-04-d80	1409272
SCH.KSP160LH	KSP3-LH 160-Z	160 x 160	97.2		•	•		8	20	9	120	16.00	100	3	DDF.91x-04-d80	1409312
SCH.KSP160F	KSP3-F 160-Z	160 x 160	97.2		•		•	6	45	9	120	15.80	100	3	DDF.91x-04-d80	1409351
SCH.KSH100	KSH3 100-Z	100 x 100	94.2	•		•		2	18	60	70	7	100	2	DDF.91x-04-d80	1463173
SCH.KSH100LH	KSH3-LH 100-Z	100 x 100	94.2	•		•		6	16	120	70	7	100	2	DDF.91x-04-d80	1463180
SCH.KSH100F	KSH3-F 100-Z	100 x 100	94.2	•			•	4	18	60	70	7	100	2	DDF.91x-04-d80	1463178
SCH.KSH140	KSH3 140-Z	140 x 140	97.7	•		•		3	30	60	90	13	100	4	DDF.91x-04-d80	1463182
SCH.KSH140LH	KSH3-LH 140-Z	140 x 140	97.7	•		•		7	30	120	90	13	100	4	DDF.91x-04-d80	1463185
SCH.KSH140F	KSH3-F 140-Z	140 x 140	97.7	•			•	6	30	60	90	13	100	4	DDF.91x-04-d80	1463188
SCH.KSH160	KSH3 160-Z	160 x 160	102.2	•		•		3	45	60	120	18.8	100	3	DDF.91x-04-d80	1463202
SCH.KSH160LH	KSH3-LH 160-Z	160 x 160	102.2	•		•		8	20	120	120	19	100	3	DDF.91x-04-d80	1463224
SCH.KSH160F	KSH3-F 160-Z	160 x 160	102.2	•			•	6	45	60	120	18.8	100	3	DDF.91x-04-d80	1463207

LH version = long stroke F version = 1 fixed jaw


^{*} at max. pressure and / or max. torque
** with standard jaws KTR 64 / 100 / 160 / 250 (machining must be carried out by the customer)
*** see **p. 35**, matching spindle adapter (**p. 76**) included in order item

^{****} only indexing allowed

Clamping device assembled by pL LEHMANN, final adjustment by customer (if ordered together with a rotary table)

Further information: www.schunk.com

Request installation and operating instructions directly from manufacturer

NSE3 138-P with two media transfers

Adapter flange

	pL LEHMANN Item no.		Compatible with zero-point clamping systems	L from spindle adapter [mm]	Weight [kg]	SCHUNK Item no.
	SCH.5xx-Ada90	0	NSE mini 90	15	1	1505504
8	SCH.5xx-Ada138	2	NSE3 138	35.7	3.7	1505506
	SCH.5xx-Ada138P	3	NSE3 138 P	35.7	3.7	1505507

Important technical data

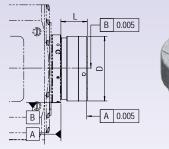
	Unit	NSE3 138	NSE +176
Pneumatic system	[mm]	Yes	Yes
Repeat accuracy	[mm]	< 0.005	< 0.005
Actuating pressure	[bar]	6	6
Draw-in force	[kN]	28	40
Retention force M16	[kN]	75	75

Zero point clamping systems

pL LEHMANN Item no.	Designation non-rusting	Pneumatic 6 bar	Turbo function	non-rusting	D [mm]	L from spindle adapter (with adapter flange) [mm]	Draw-in force [kN]	Incr. draw-in force with turbo function [kN]	Max. retention force [kN]	Weight (with adapter flange) [kg]	Max. speed ** [rpm]	Open	Anti-twist protection	Required adapter flange	Required rotary union*	SCHUNK catalog reference
SCH.90ix	VERO-S NSE mini 90-V1	•	•	•	ø90	35	0.5	1.5	25	1.8	100	•	•	0	DDF.91x-04-d80	0435105
SCH.138ix	VERO-S NSE3 138-V1	•	•	•	ø138	69.5	8	28	75	8.20	100	•	•	2	DDF.91x-04-d80	1313723
SCH.138ix-P	VERO-S NSE3 138-V1-P	•	•	•	ø138	69.5	8	28	75	6.7	100	•	•	3	DDF.91x-04-d80	1359500

^{***} see $\mathbf{p.~35},$ matching spindle adapter ($\mathbf{p.~76})$ included in order item

Increased accuracy = ½ tolerance values; Item no. NPS.5xx-GEN



^{**} only indexing allowed P = with media passage

Clamping devices assembled by pL LEHMANN, final adjustment by customer (if ordered together with a rotary table)

Further information at: www.hwr.de

Request installation and operating instructions directly from manufacturer

HWR zero-point clamping system

pL LEHMANN Item no.	Designation	Manual	Dimensions D x L [mm]	Weight [kg]	Max. speed [rpm]	Required pL LEHMANN accessories	suitable for HWR 5-axis vises*
HWR.5xx-SP52m	SOLIDPoint® 52 incl.	•	116x37	3.4	400	SPI.91x-d80	691065-46, 691105-46, 691145, 683085-46, 683120-46, 683085-77.
HWR.520-SP52m	adapter plate	•	116x43*	3.6	400		683120-77, 683160-77
HWR.5xx-SP52 +96m	SOLIDPoint® 96/52 incl.	•	196x37	7.6	400	SPI.91x-d80	691065-46, 691105-46, 691145, 683085-46, 683120-46, 683085-77,
HWR.520-SP52 +96m	adapter plate	•	196x43*	7.6	400		683120-77, 683160-77 683155-77, 683155-125
HWR.5xx-SP96m	SOLIDPoint® 96 incl.		196x43	7.6	400	SPI.91x-d80	683155-77, 683155-125
HWR.520-SP96m	VR.520-SP96m adapter plate	adapter plate	196x43*	7.6	400		003133-11,003133-125

 $^{^{\}star}$ Length dimensioned from screw-on surface behind taper

Vises suitable for the HWR zero-point clamping system

pL LEHMANN Item no.	Designation	Clamping capacity [mm]	Weight [kg]	Max. speed [rpm]	HWR Item No.	Base body required
HWR.SG46-S65	SOLIDGrip 46, length 77 mm, jaw width 46 mm	0 - 65	1.7	400	691065-46	
HWR.SG46-S105	SOLIDGrip 46, length 117 mm, jaw width 46 mm	0 - 105	2.5	400	691105-46	
HWR.SG46-S145	SOLIDGrip 46, length 157 mm, jaw width 46 mm	0 - 145	3.2	400	691145-46	pL LEHMANN Item No.
HWR.SG77-S85	SOLIDGrip 77, length 102 mm, jaw width 77 mm	0-85	2.3	400	683085-77	HWR.5xx-SP52m / HWR.520-SP52m
HWR.SG77-S120	SOLIDGrip 77, length 130 mm, jaw width 77 mm	0 – 120	2.9	400	683120-77	
HWR.SG77-S160	SOLIDGrip 77, length 170 mm, jaw width 77 mm	0 – 160	3.5	400	683160-77	
HWR.SG125-S155-125	SOLIDGrip 125, length 160 mm, jaw width 125 mm	0 – 155	8.4	400	683155-125	pL LEHMANN Item No. HWR.5xx-SP96m / HWR.520-SP96m

Clamping tools installed and aligned by pL LEHMANN (if ordered together with a rotary table)

Further information at: www.gressel.ch

Request installation and operating instructions directly from manufacturer

GRESSEL gredoc pallet system

	pL LEHMANN Item No.	Designation	Manual	D1 [mm]	D2 [mm]	L1 [mm]	L2 [mm]	Weight [kg]	Max. speed [rpm]	Required spindle adapter	GRESSEL Item no. incl. adapter flange
980	GRE.510-GRU*	gredoc round	•	ø135	148	30	-	3		SPI.91x-d80	NGS.010.016.01

Technical data	Unit	Dimensions
Mechanical system		Yes
Repeatability	(mm)	< 0.01
Clamping force	(kN)	20
Height tolerance	(mm)	± 0.005

Clamping devices for above GRESSEL gredoc pallet system

pL LEHMAN Item No.	IN Designation	Manual	D [mm]	L from spindle [mm]	Pallet sizes	Weight [kg]	Max. speed* [rpm]	GRESSEL catalog reference	Base body required
GRE.C280-9	grip C2.0 80 L-130 with reversible jaw grip	•	157 x 80 x 78	128		4	100	CNM.080.001.01	
GRE.C2125	-grip C2.0 125 L-160 with reversible jaw grip	•	208 x 125 x 83	133		8.7	100	CNM.125.001.01	GRE.5xx-GRU*
GRE.NGZ-p	Pyramid 3-way 30° for C3 L-80	•	ø190 x 54 / 30°		ø190	2.6	100	NGZ.010.135.11	
GRE.C3	C3 L-80 without system jaws	•	70 x 80 x 42			0.9	100	CGM.070.002.01	GRE.DOC-x
GRE.SWB-g	grip SWB grip 3mm width 45 (1 piece)	•	45 x 22 x 22			0.1	100	CGA.070.001.01	
GRE.AB	Mounting pin, incl. fastening screw	•	ø40			0.1	100	NGA.000.001.01	

All items must be ordered separately! (Ex. assembly for pL LEHMANN EA-507: NGS.010.015.01 + CGM.080.001.01 + NGA.000.001.01) \star only indexing allowed

C2.0 125

20

SWB grip 3 mm

Pyramid 3-way 30° with C3 L-80 grip


D B 0.005

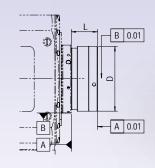
Clamping tools installed and aligned by pL LEHMANN (if ordered together with a rotary table)

Further information at: www.gressel.ch

Request installation and operating instructions directly from manufacturer

gredoc + gre4doc modular zero-point clamping system

Clamping towers


pL LEHMANN Item No.	Designation	Manual	D [mm]	L from spindle [mm]	Pallet sizes [mm]	Weight [kg]	Max. speed* [rpm]	GRESSEL catalog reference	Base body required
GRE.DOC-1	gre4doc 1-way bracket	•	150 x 100 x 70		ø148	2.9	100	NGS.040.000.01	
GRE.DOC-3	gre4doc 3-way pyramid	•	ø148 x 171		ø148	6.3	100	NGS.040.200.01	GRE.5xx-GRU*
GRE.DOC-4	gre4doc 4-way pyramid	•	ø197 x 171		ø148	11.9	100	NGS.040.210.01	

^{*} only indexing allowed

einfach. zukunft. greifen.

Clamping devices assembled by pL LEHMANN, final adjustment by customer (if ordered together with a rotary table)

Further information at: www.lang-technik.de Request installation and operating instructions directly from manufacturer

LANG zero-point clamping system

pL LEHMANN Item no.	Designation		Power-actuated	Dimensions D x L [mm]	Weight [kg]	Max. speed [rpm]	Required pL LEHMANN accessories	suitable for LANG 5-axis vises*
LAN.5xx-QP52m	Quick·Point® 52,	•	Ø 116 x 43		3.60		SPI.91x-d80	48085-46 / 48085-77 / 48120-46 /
LAN.5xx-QP52k	incl. adapter flange				on request		SPZ.91x-S9	48120-77 / 48160-77
LAN.5xx-QP52 +96m	Quick·Point® 52/96, incl. adapter flange			Ø 196 x 37	on request	400	SPI.91x-d80	48085-46 / 48085-77 / 48120-46 / 48120-77 / 48160-77 / 48155-77 / 48155-125
LAN.5xx-QP96m		•			7.60		SPI.91x-d80	
LAN.5xx-QP96m-D**	Quick-Point® 96.	•		Ø 196 x 27	on request	400	SPI.91x-d80	48155-77 / 48155-125
LAN.5xx-QP96k	incl. adapter flange		•	Ø 196 x 37	on request	on request	SPZ.91x-S9	
LAN.520-QP96m				Ø 196 x 41.5	7.50	400		48155-77 / 48155-125

^{*} The maximum length of the vise base body depends on the rotary axis type. Longer vise variants may be possible. Please inquire.
** with through hole Ø 46.55 mm

LAN.5xx-QP52 +96m

LAN.5xx-QP96m-D

Vises suitable for the LANG zero-point clamping system

Example of application Makro-Grip® 77 with Quick-Point® 52, on pL LEHMANN EA-915

pL LEHMANN Item no.	Designation	Clamping capacity [mm]	Weight [kg]	Max. speed [rpm]	LANG Item No.	Base body required
LAN.MG46-S85	Makro·Grip® 46, length 102 mm Jaw width 46 mm	0-85			48085-46	
LAN.MG46-S120	Makro·Grip® 46, length 130 mm Jaw width 46 mm	0 – 120			48120-46	
LAN.MG77-S85	Makro·Grip® 77, length 102 mm Jaw width 77 mm	0-85	2.30	400	48085-77	pL LEHMANN Item No. LAN.5xx-QP52x
LAN.MG77-S120	Makro·Grip® 77, length 130 mm Jaw width 77 mm	0-120	2.90	400	48120-77	
LAN.MG77-S160	Makro·Grip® 77, length 170 mm Jaw width 77 mm	0-160	3.50	400	48160-77	
LAN.MG77-S155	Makro·Grip® 77, length 160 mm Jaw width 77 mm	0-155			48155-77	pL LEHMANN
LAN.MG125-S155	Makro·Grip® 125, length 160 mm Jaw width 125 mm	0 – 155	8.40	400	48155-125	Item No. LAN.5xx-QP96x

All LANG vises can also be attached to other zero-point clamping systems (Erowa, Schunk, 3R, etc.) after being adjusted slightly. For further information, please contact your local LANG Technik representative.

96

B 0.005

ProductionChuck 210 Combi ER-032388

Clamping devices installed and aligned by pL LEHMANN (if ordered together with a rotary table)

Further information at: www.erowa.com

Request installation and operating instructions directly from manufacturer

	pL LEHMANN Item No.	Designation (incl. flange)	Manual	Pneumatic	D [mm]	L from spindle adapter [mm]	Pallet sizes [mm]	Workpiece weight (perm.) [kg]	Weight [kg]	Max. speed [rpm]	Opening	Clean Z-support	Rotary union	Chuck weight, (incl. adapter flange) [kg]	EROWA catalog reference	EROWA Item no., incl. adapter flange
	ERO.5xx-CTSix	CTS Chuck Dual Rotation (Inox)		•	ø112	45.3	ø60	4		8,000			1)	4.3	ER-050316	on request
	ERO.5xx-FTSix	FTS Chuck (Inox)		•	ø74	46.5	ø72	4	1.50	4,000	•	•	1)	1.5	ER-057335	ER-073469
88	ERO.5xx-QCix	QuickChuck 100 P (Inox)	•		ø100	50	□50/ø148	35	2.60	3,000				2.6	ER-036345	ER-073351
	ERO.5xx-ITS100ix	ITS Chuck 100 P (Inox)		•	ø100	50	□50/ø148	35	2.50	5,000	•	•	1)	2.5	ER-043123	ER-073433
	ERO.5xx-MTS	MTS IntegralChuck S-P/A		•	ø130	60	ø148	50	4.00	4,500	•	•	1)	4	ER-036802	ER-073457
	ERO.520-PC	PowerChuck P		•	ø150	75	□50/ø148	50	8.70	5,000	•	•	2)	8.7	ER-115254	ER-073460
KK5	ERO.520-P210	ProductionChuck 210		•	ø81/ø210	98	ø210	120	16.60	4,500	•	•	2)	16.6	ER-032964	ER-073461
	ERO.520-P210c	Product.Chuck 210 Combi		•	ø210	98	□50/ø210	120	18.00	4,500	•	•	2)	18	ER-032388	ER-073462

Increased accuracy = 1/2 tolerance values; Item no. NPS.5xx-GEN

Additionally required rotary union (see **p. 35**): 1) = DDF.91x-04-d80, 2) = DDF.91x-04-KK5

for all automatic	chucks	
ERO.HSV	Manual control valve	supplied loose with all necessary cables and hoses, ready to connect
ERO.ASV-2	Automatic control valve	supplied loose, for installation in the control cabinet, with all necessary cables/hoses

When standard pallets with open holes are used, water, metal chips etc. can get into the pallet chuck, air lines and control valve. To prevent this, seal kits are available from the respective chuck manufacturers.

The speed values are theoretical, application-specific maximum values. The user is responsible for the optimum radial run-out of the pallets (incl. clamping device and workpiece) as well as sufficient workpiece fastening.

FTS Chuck (Inox) ER-057335

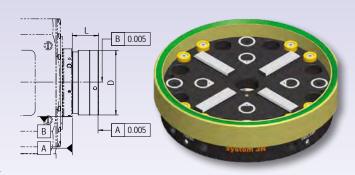
ITS Chuck 100 P (Inox) ER-043123

CTS Chuck Rotation (Inox) ER-057324

MTS IntegralChuck S-P/A ER-131210

PowerChuck P ER-115254

Manual control valve (option)



Automatic control unit with monitoring (option)

Clamping devices installed and aligned by pL LEHMANN (if ordered together with a rotary table)

Further information at: www.system3r.com

Request installation and operating instructions directly from manufacturer

S3R.5xx = Item number for combined chuck for types 507 and 510

	pL LEHMANN Item No.	Designation (incl. flange)	Pneumatic	D [mm]	L from spindle adapter [mm]	Pallet sizes [mm]	Number of media transfers	Workpiece weight (perm.) [kg]	Weight [kg]	Max. speed [rpm]	Permitted pull-out torque [Nm]	Opening	Clean Z-support	Clean cams	incr. clamping force/venting	Rotary union	SYSTEM 3R Catalog reference	SYSTEM 3R item no. incl. adapter flange
91x	S3R.5xx-G70C	3R GPS 70 COCN	•	ø99	76	ø70	-	10	3.65	5,450		•	•				X663070	X697640
	S3R.5xx-G70	3R GPS 70	•	ø99	56	ø70	-	10	2.70	5,450		•	•			1)	C188720	X663000
	S3R.5xx-G70C	3R GPS 70 COCN	•	ø99	76	ø70	-	10	3.65	5,450		•	•				X663070	X697640
	S3R.510-G120	3R GPS 120	•	ø118	56	ø120	-	20	3.60	5,450		•	•			1)	C188770	X663010
88	S3R.510-G120-P	3R GPS 120	•	ø118	64	ø120	4	20	3.95	5,450		•	•				C190120	X663080
	S3R.510-MGC*	3R Magnum Chuck	•	ø162	46	ø156, w/index pin	-	100	6.70	5,450		•	•		•	1)	3R-SP26712	90940.02
	S3R.510-MGC-P*	3R Magnum Chuck		ø162	48	ø156, w/index pin	2		6.10	5,450		•	•				90948	X697650
	S3R.510-MCC	3R Macro Chuck	•	ø100	49	54x54, 70x70	-	10	2.60	5,450		•	•		•	1)	3R-600.14-30	90940.01
	S3R.520-G120	3R GPS 120	•	ø118	70	ø120	-	20	5.00	5,450		•	•			2)	C188770	X663020
	S3R.520-G120-P	3R GPS 120	•	ø118	71	ø120	4	20	5.00	5,450		•	•				C190120	X663090
	S3R.520-G240	3R GPS 240	•	240x240	84	240x240	-	150	20.70	3,000		•	•	•	•	2)	C219200	X663030
	S3R.520-G240-P	3R GPS 240	•	240x240	84	240x240	2	150	20.70	3,000		•	•				X633700	X697600
	S3R.520-G240ix	3R GPS 240, rust-resistant	•	240x240	84	240x240	-	150	21.00	3,000		•	•	•	•	2)	X607620	X663040
KK5	S3R.520-G240ix-P	3R GPS 240, rust-resistant	•	240x240	84	240x240	2	150	21.00	3,000		•	•				X691630	X697610
	S3R.520-MGC*	3R Magnum Chuck	•	ø162	60	ø156, w/index pin	-	100	7.70	5,450		•	•		•	2)	3R-SP26712	90940.12
	S3R.520-MGC-P*	3R Magnum Chuck	•	ø162	60	ø156, w/index pin	2	100	7.20	5,450		•	•				90948	X697660
	S3R.520-MCC	3R Macro Chuck	•	ø100	63	54x54, 70x70	-	10	3.50	5,450		•	•		•	2)	3R-600.14-30	90940.11
	S3R.520-DYN	3R Dynafix	•	277x277	83		-	250				•	•				3R-770-5	90940.30
	S3R.520-DYN-P	3R Dynafix	•	277x277	83		2	250	30			•	•				3R-770-5A	X697670
ţ	S3R.RP-GPS240	Reference pallet GPS 240															C846600	
aet aet	S3R.RP-GPS70120	Reference pallet GPS 70															C846360	
Ref. Palette	S3R.RP-Macro	Reference pallet Macro															36-606.1	
æ	S3R.RP-Magnum	Reference pallet Magnum															3R-686.1-HD	

Additionally required rotary union (see **p. 35**): 1) = DDF.91x-04-d80, 2) = DDF.91x-04-KK5

* For Magnum pallets only. Macro pallets may not be clamped

When standard pallets with open holes are used, water, metal chips etc. can get into the pallet chuck, $air\ lines\ and\ control\ valve.\ To\ prevent\ this,\ seal\ kits\ are\ available\ from\ the\ respective\ chuck\ manufacturers.$

Increased accuracy = 1/2 tolerance values; Item no. NPS.5xx-GEN

- Repeatability 2 μ
 Angular position accuracy 0.005 mm

- Cast aluminum design at very good price-performance ratio Compact in overall height
- No clamping spigots
- Complete coverage for sink erosion and milling applications Ideal for automation
- High-precision repeatability

Macro

98

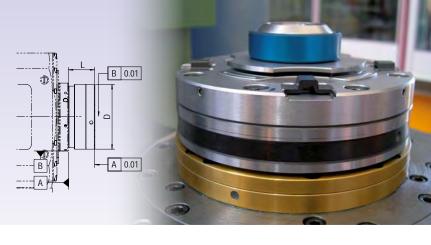
- High stability and precision
- High stability and precision
 Especially for milling applications

- Macro Magnum Solid constructionHigh stability and precision

- Complete tightness
 Especially for milling applications in the high-precision range

Dynafix

- High holding and clamping forces
- Extremely precise steel ground 0-point supports
 Mainly milling and sink erosion applications



Clamping tools assembled by pL LEHMANN, final adjustment by customer (if ordered together with a rotary table)

Further information: www.parotec.ch Request installation and operating instructions directly from manufacturer

	pL LEHMANN Item No.	Designation	Manual	Pneumatic	D [mm]	L from spindle adapter [mm] (up to Z-support)*	Pallet sizes [mm]	Number of media transfers	Max. workpiece weight [kg]	Weight [kg]	Max. speed [rpm]	Open system [bar]	Clean Z-support	With re-tightening	Required accessories*	PAROTEC Item no., Incl. adapter flange
	PAR.510-PG162p	POWER GRIP 160, 1x		•	Ø162	69	□158/Ø148	0	250	9.5	6,000	6	•	•	DDF.91x-04-d80	XT2160162010
	PAR.510-PG162mp	POWER GRIP 160, 1x (LPA)	•		Ø162	69	□158/Ø148	0	250	9.5	6,000	6		•	SPI.91x-d80	XT2160162011
88	PAR.510-PG162p-P	POWER GRIP 160, 1x		•	Ø162	69	□158/Ø148	3	250	9.6	6,000	6	•	•	DDF.91x-04-d80	XT2160162013
	PAR.510-PY162p	POLY GRIP, 1x		•	Ø162	69/76.5	Ø70-Ø148	0	50			6	•	•	DDF.91x-04-d80	XT9911420710
	PAR.510-PY162mp	POLY GRIP, 1x (LPA)	•		Ø162	69/76.5	Ø70-Ø148	0	50			6		•	SPI.91x-d80	XT9911420711

^{*} see **p. 35**, matching spindle adapter (**p. 76**) included in order item

LPA = air gun connection

Technical data	Unit	POWER GRIP	POLY GRIP
Repeatability	mm	±0.002	±0.002
Clamping force without retightening PNEU	kN	17	7
Clamping force with retightening PNEU	kN	28	12
Clamping force without retightening HYDR	kN	35	
Clamping force with retightening HYDR	kN	45	
Permissible pull-out torque without retightening PNEU 6 bar	Nm	429	160 / 210*
Permissible pull-out torque without retightening HYDR 30 bar	Nm	890	

^{* 2} possible Z-supports. More details on request.

POWER GRIP 160, 1x on EA-91x

Clamping tools assembled by pL LEHMANN, final adjustment by customer (if ordered together with a rotary table)

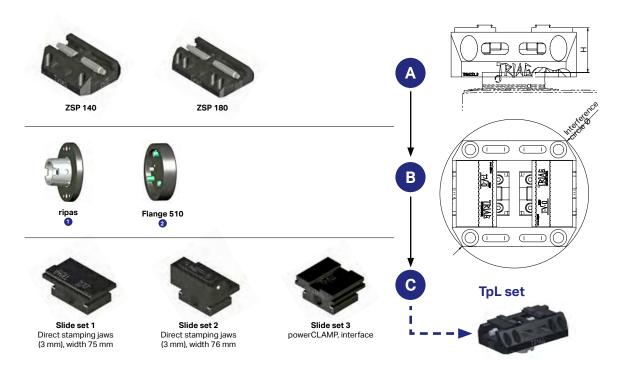
Further information: www.evard-precision.ch
Request installation and operating instructions directly from manufacturer

Centering vice - Type CM

	pL LEHMANN Item no.	Designation	Manual	Pneumatic	Size [mm]	Clamping capacity [mm]	Weight [kg]	Required accessories	Evard Catalog Reference	Evard Item no. incl. adapter flange
	EVA.5xx-2020	CM centering vise	•		20	25	0.22	SPI.91x-d80	2020	2020507
	EVA.5xx-2021	CM stainless steel centering vise	•		20	25	0.22	SPI.91x-d80	2021	2021507
	EVA.5xx-3000	CM centering vise	•		30	56	0.66	SPI.91x-d80	3000	3000507
980	EVA.5xx-7050	Azimuth centric clamping unit		•	50	50	1.20	SPI.91x-d80	7050	7050507
ਝ	EVA.5xx-3001	CM stainless steel centering vise	•		30	56	0.66	SPI.91x-d80	3001	3001507
	EVA.5xx-5000	CM centering vise	•		50	89	2.30	SPI.91x-d80	5000	5000510
	EVA.5xx-7070	Azimuth centric clamping unit		•	70	70	4.00	SPI.91x-d80	7070	7070510
	EVA.5xx-8000	CM centering vise	•		80	137	6.45	SPI.91x-d80	8000	8000510

Combine the EA-91x rotary table with the CM 20 centering vice and split the μ 's.

Jaws


100

pL LEHMAN		Size	Weight	Evard
Item no.	Designation	[mm]	[kg]	Item no.
EVA.500053	Standard jaw	50	Included in the weight of the vice	500053
EVA.50005	Stepped jaw	50	Included in the weight of the vice	500051
EVA.500052	Claw jaw	50	Included in the weight of the vice	500052
EVA.50005	Special claw jaw	50	Included in the weight of the vice	500055
EVA.800053	Standard jaw	80	Included in the weight of the vice	800053
EVA.80005	Stepped jaw	80	Included in the weight of the vice	800051
EVA.800052	Claw jaw	80	Included in the weight of the vice	800052
EVA.80005	Special claw jaw	80	Included in the weight of the vice	800055
EVA.10505	Standard jaw	105	Included in the weight of the vice	105053
EVA.10505	Stepped jaw	105	Included in the weight of the vice	105051
EVA.105052	. Claw jaw	105	Included in the weight of the vice	105052
EVA.10505	Special claw jaw	105	Included in the weight of the vice	105055

Ultra-compact self-centering vice – only 50 mm above spindle

Clamping tools assembled by pL LEHMANN, final adjustment by customer (if ordered together with a rotary table)

Manufacturer for adaptation to pL rotary table: www.ivo-oesterle.de Manufacturer for all other add-on elements: www.triag-int.ch

A Centric clamping unit

pL LEHMAN Item No.	IN Designation	L from flange	Interference circle Ø [mm]	Weight, approx. (without adapter flange) [kg]	Max. speed [rpm]	Required adapter flange	TRIAG item no.
TRI.ZSP-14	O ZSP 140 (140 x 120 x 50)	32.5	184	3	400	0/0	ZSX140L50-PL
TRI.ZSP-18	O ZSP 180 (180 x 120 x 50)	32.5	216	4.2	400	0/9	ZSX180L50-PL

B Hollow shank taper adapter and flange

	pL LEHMANN Item no.		Compatible with centric clamping units	L from spindle [mm]	Weight [kg]	Required*	TRIAG item no.
HSK	RIP.63ada	0	ZSP 140 / ZSP 180	12.5	0.9	RIP.91x-63 m	FLZSX-HSK63-PL
d80	TRI.510	2	23F 14U/23P 18U	15	1.2	SPI.91x-d80	FLZSX-510-PL

^{*} see **p. 76/79**

Suitable jaw set

_				
	pL LEHMANN		Weight	
	Item No.	Designation	[kg]	TRIAG item no.
8	TRI.ZB5X	Slide set 1 direct stamping jaws (3 mm), width 75 mm	1	ZB5XPRG
SP (C	TRI.ZB5U	Slide set 2 direct stamping jaws (3 mm), width 76 mm	2	ZB5UPRG
7 4	TRI.ZBM	Slide set 3 powerCLAMP, interface	1.8	ZBM

Clamping devices assembled by pL LEHMANN, final adjustment by customer (if ordered together with a rotary table)

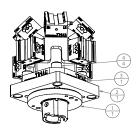
Further information at: www.triag-int.ch

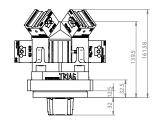
Request installation and operating instructions directly from manufacturer

Pneumatic centric clamping unit

	pL LEHMANN Item No.	Designation	Size [mm]	L from spindle (with adapter flange, without jaws) [mm]	Pneumatic	Jaw stroke [mm]	Clamping force [kN] *	Max. pressure (bar)	Max. range with standard jaws ** [mm]	Weight (with adapter flange) [kg]	Max. speed *** [rpm]	Additionally required pL LEHMANN rotary union **	TRIAG Item no.
d80	TRI.5xx-ZSP150	Centric clamping unit	150 x 150	105	•	6	24	12	124.5	13.5	400	DDF.91x-04-d80	ZSP150L100- 510/520-PL

^{*} at max. pressure and / or max. torque ** see **p. 35** *** only indexing allowed




5-axis centric clamping block

	LEHMANN n No.	Designation	Size	L from spindle (with adapter flange and clamp, without jaws)	Manual	Weight (with adapter flange)	Max. speed*	Additionally required pL LEHMANN accessories **	TRIAG
,	.5xx-CENHSK	5-axis	[mm]	[mm] 162	_	[kg] 7.7	[rpm]	RIP.91x-63x	FLZSX-HSK63-PL UB5AXMCZ40-45-4 ZF230540
QuickPoint	.5xx-CENQP	centric clamping block	120 X 120	149	•	7	0	LAN.5xx-QP96x	UB5AXMCZ40-45-4 ZF230540

^{*} only indexing allowed

102

^{**} see **p. 79**

Further information at: www.tgcolin.ch

TG Colin

YERLY

Further information at: www.hofer-maschinentechnik.ch

SwissChuck

Precision power chucks (cylinder-actuated)

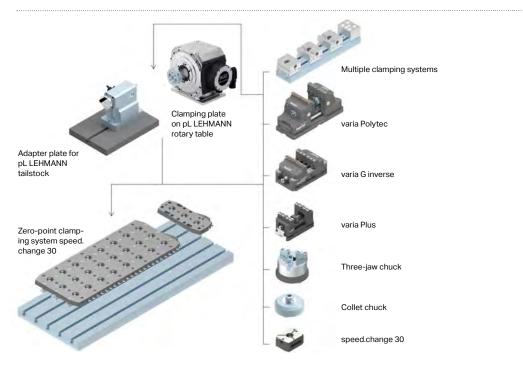
Precision diaphragm chuck (pneumatically actuated)

- Sealed and oil filled
- High-precision
- Precision interface for fast changeovers

HOFER

EA-915 with TITAN 100 zero-point clamping system

TITAN 100 zero-point clamping system



REX-M centric clamping unit

Further information at: www.piranha-clamp.ch

hemo

PiranhaClamp

Zero-point clamping plates

EA-915 with NSP

Ripas

PV 75 Ripas

Snapper 170 Ripas

Ripas Snapper 300 Ripas

Gepard 170 Ripas

Gepard 300 Ripas

Further information at: www.stark-inc.com

Further information at: www.amf.de

STARK



AMF

HWR

pL LEHMANN item No.	Description	Manual	Dimensions L x W x H [mm]	Weight [kg]	Spacing	Positioning accuracy [mm]	Retention force 4 pins [kN]	Number of clamping nests	HWR Item No.
HWR.SP52+96m-1	SOLIDPoint® 96/52: zero-point clamping plate	•	192 x 192 x 27	7.2	96/52	0.005	60	1	660005 + 662101 + 662111
HWR.SP96m-1	SOLIDPoint® 96: zero-point clamping plate	•	192 x 192 x 27	7.2	96	0.005	60	1	660205 + 662101 + 662111
HWR.SP96m-2	SOLIDPoint® 96: multiple zero-point clamping plate	•	384 x 192 x 27	15	96	0.005	60	2	660025 + 677102 + 677112
HWR.SP52+96m-2	SOLIDPoint® 96/52: multiple zero-point clamping plate	•	384 x 192 x 27	15	52/96	0.005	60	2	660225 + 677102 + 677112
HWR.SP96m-4	SOLIDPoint® 96: multiple zero-point clamping plate	•	384 x 384 x 27	28	96	0.005	60	4	660045 + 677104 + 677114

LANG

pL LEHMANN item No.	Description		Dimensions LxWxH [mm]	Weight [kg]	Spacing	Repeatability [mm]	Retention force 4 pins [kN]	Number of clamping nests	LANG Item No.
LAN.QP96m-1	QuickPoint® 96: zero-point clamping plate	•	192 x 192 x 27	7.76	96	0.005	6	1	45710
LAN.QP52+96m-1	QuickPoint® 96/52: zero-point clamping plate	•	192 x 192 x 27	7.45	52/96	0.005	6	1	45748
LAN.QP96m-2	QuickPoint® 96: multiple zero-point clamping plate	•	384 x 192 x 27	16.48	96	0.005	6	2	45720
LAN.QP96m-4	QuickPoint® 96: multiple zero-point clamping plate	•	384 x 384 x 27	31.48	96	0.005	6	4	45740

LAN.QP96m-4

GRESSEL

pL LEHMANN item No.	Description	aun	Dimensions LxWxH [mm]	Weight [kg]	Spacing	Positioning accuracy [mm]	Retention force 4 pins [kN]	Number of clamping nests	GRESSEL Item No.
GRE.GEC-2	2-way angular	•	400 x 130 x 30	11	200	< 0.01	2 x 20	2	NGS.020.022.01
GRE.GEC-3	3-way angular	•	600 x 130 x 30	18	100	< 0.01	3 x 20	3	NGS.020.023.01

GRE.GEC-2

Preparations for base plate at rotary table, counterbearing and tailstock

Rotary table and counterbearing

For adaptation of the rotary table and the counterbearing, a base plate with corresponding adaptation to the zero-point clamping system is required. The design is project-specific and is offered as an engineering service.

	Item No.	Item No.	Item No.	Increase of center		
	Base plate	Adaptation	Engineering	height		
EA-507 (508)	GPL.507-150			40mm		
EA-510 (511)	GPL.510-180			30mm		
EA-520 (521)	GPL.520-220	SPEZ.GPL-m	SPEZ.ENG-k	40mm		
EA-530	GPL.530-280	SPEZ.GPL-III	SPEZ.ENG-K	60mm		
GLA.TOP1	GPL.TOP1-150			40mm		
GLA TOP2	GPI TOP2-180			30mm		

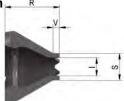
Tailstock

For adaptation of the tailstock, the standard base plate can be adapted to the zero-point clamping system. If this is not possible due to the positioning on the zero-point clamping plate (e.g. break-through of the holes), an adaptation base plate is required.

	Item No.	Item No.	Item No.
	Adaptation base plate	Adaptation	Engineering
RST.LIG-xxxx	without GPL.RST-30	SPEZ.GPL-m	SPEZ.ENG-k

Installed by pL LEHMANN (if ordered together with a rotary table)

Further information: www.roehm.biz Request installation and operating instructions directly from manufacturer



Face driver, play-free version with hydraulic compensation for clockwise and counterclockwise rotation

	pL LEHMANN		Overhang	Max. workpiece weight	Max. axial load	Weight	Max. speed	Required spindle	RÖHM Item no., incl.
	Item no.	Designation	[mm]	[kg]	[kN]	[kg]	[rpm]	adapter	adapter flange
980 q80	RÖH.510-SM	Face driver	65	100	20			SPI.91x-d80	1340450

Accessories: Driver plates / play-free / clockwise and counterclockwise rotation.

	pL LEHMANN Item no.	Designation	S Clamping circle Ø	Associated center Ø	R Overhang [mm]	l [mm]	V [mm]	Weight [kg]	RÖHM Item no.
	RÖH.MS-DV08	Driver plate	8	4	38	4.5	4		1341603
eq	RÖH.MS-DV10	Driver plate	10	4	38	4.5	4		1341604
directly geared	RÖH.MS-DV12	Driver plate	12	6	36	7	4		1341605
<u>×</u>	RÖH.MS-DV16	Driver plate	16	10	33	11	4		1341606
ect	RÖH.MS-DV20	Driver plate	20	12	30	13	4		1341607
흉	RÖH.MS-DV25	Driver plate	25	16	30	17	8		1341608
	RÖH.MS-DV32	Driver plate	32	16	30	22	10		1341609
3.2	RÖH.MS-HM20	Driver plate	20	6	30	7	8		1341624
×	RÖH.MS-HM25	Driver plate	25	10	30	11	8		1341625
HM plates	RÖH.MS-HM32	Driver plate	32	16	30	17.5	10		1341626
ĭ⊒	RÖH.MS-HM40	Driver plate	40	16	30	27	16		1341627
	RÖH.MS-HM50	Driver plate	50	16	30	36			1341635
select.	RÖH.MS-HM63	Driver plate	63	16	30	49			1341636
š	RÖH.MS-HM80	Driver plate	80	16	30	66			1341637

Driver plate, directly geared 1209000

Driver plate 3x select. HM plates 6 x 3.2 1209007

Accessories: Metal carbide driver plates, clockwise and counterclockwise rotation

pL LEHMANN Item no.	Designation	Clamping circle Ø	Size	Weight [kg]	RÖHM Item no.
RÖH.HMP-20	Metal carbide plate	20–32	6 x 3.2		88970
RÖH.HMP-40	Metal carbide plate	40–80	9.5 x 3.2		87931

Accessories: Center

pL LEHMANN Item no.	Designation	Clamping circle Ø	Y Center Ø	N1 [mm]	Weight [kg]	RÖHM Item no.
RÖH.ZS-08	Center	8–10	4	90		1341941
RÖH.ZS-12	Center	12	6	90		1341942
RÖH.ZS-16	Center	16	10	90		1341943
RÖH.ZS-20	Center	20	12	90		1341944
RÖH.ZS-25	Center	25-80	16	90		1341945

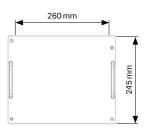
Supplied loose by pL LEHMANN

Further information: www.roehm.bizRequest installation and operating instructions directly from manufacturer

Revolving centers

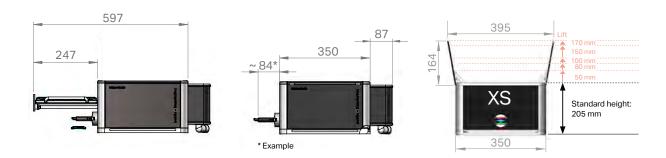
	pL LEHMANN Item no.	Designation	Mount MK	Max.run-out deviation [mm]	Max. workpiece weight [kg]	Max. radial load [daN]	Max. speed [rpm]	D Moving-tip Ø [mm]	B Housing Ø [mm]	A [mm]	G [mm]	K [mm]	Weight [kg]	RÖHM Item no.
/accessories	RÖH.ZS-DAMK3	with pressure display and length com- pensation; spring-loaded tip - spring travel max. 1.6 mm at axial clamping force of 550 daN; body hardened and ground – tip angle 60°	3	0.01	400	200	4000	25	64	105	23.8	31		60798
tions	RÖH.ZS-SAMK2	Standard version; body hardened and	2	0.005	200	100	7000	20	43	65	17.8	24		43115
Tailstock options	RÖH.ZS-SAMK3	and and the angle CO	3	0.005	400	200	6300	22	48.5	70.5	23.8	27		42315
stoc	RÖH.ZS-GDMK2	with small housing diameter, body harde-	2	0.005	200	100	7000	15	32	62	17.8	19.5		5336
Tai	RÖH.ZS-GDMK3	and and are und the angle CO	3	0.005	400	200	7000	15	34	62	23.8	19.5		5429

- For unmanned 6-side machining with integrated part changer
- Workpiece storage with quick-change system
- Installed/uninstalled on machine within minutes (with zero-point clamping)


Blow off finished workpiece

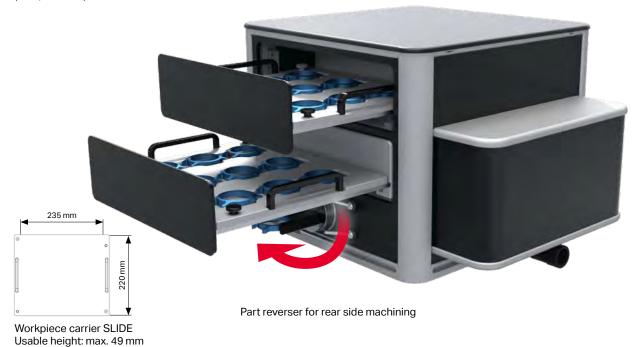
TOP

Vertical rod holder



TOP workpiece carrier Useful depth with standard height*: 94 mm

Part reverser for rear side machining


^{*} Height increase, see below

Ideal for existing and new vertical machining centers. Turn nighttime into production time «From real-world applications – for real-world applications»

Deposit finished workpiece

SLIDE

(here, SLIDE-2)

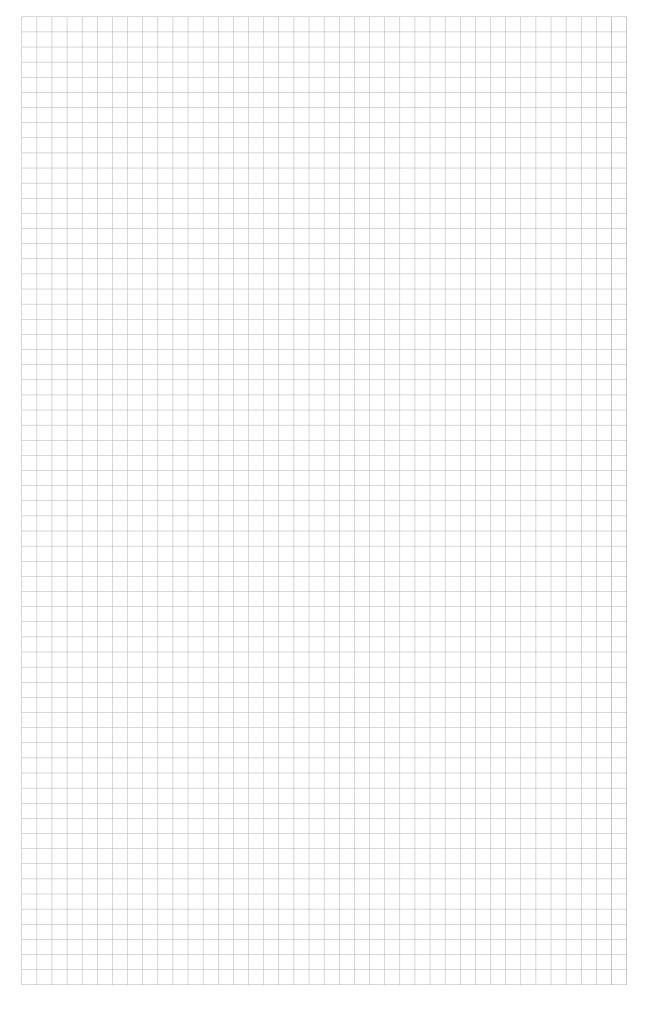
After just a few minutes ... produce!

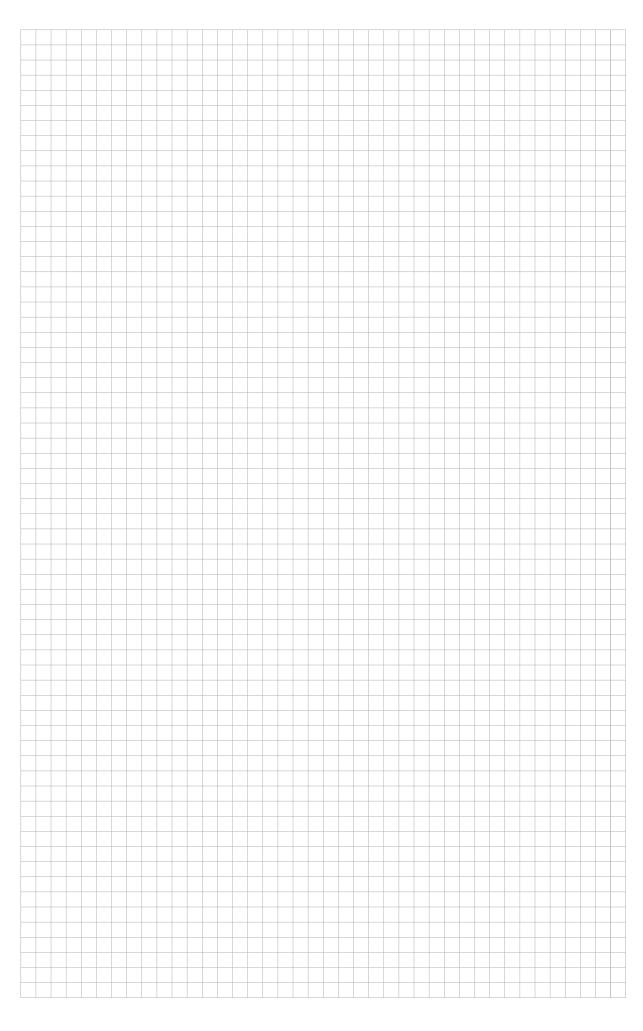
Position box and plug it in

Load workpieces

Start program

Zero-point positioning




Interesting expansion

4th axis, one spindle

ROTARY SOLUTIONS > MACHINE TOOLS & METROLOGY

Headquarters Global network PETER LEHMANN AG Europe America Asia Bäraustrasse 43 – Austria – Latvia - Brazil - China CH-3552 Bärau – Benelux -Lithuania - Canada – India Phone +41 (0)34 409 66 66 – Bosnia - Macedonia - Mexico - Israel -USA sales@plehmann.com – Bulgaria - Norway - Japan – Malaysia www.lehmann-rotary-tables.com – Croatia - Poland - Czech Republic Portugal Singapore - South Korea – Denmark - Romania – Taiwan – Éstonia - Russia - Thailand – Finland - Serbia – Slovakia - Vietnam-France – Germany - Slovenia – Hungary -Spain - Iceland – Sweden - Ireland - Turkey - Italy ∠UK – Kosovo

opL SOLUTIONS® partner

o value added reseller & partner

direct sales

More information (address, telephone number...) at www.lehmann-rotary-tables.com

Headquarters